8.3 Radiologische Verfahren
Filtern
Dokumenttyp
- Vortrag (136)
- Beitrag zu einem Tagungsband (75)
- Zeitschriftenartikel (47)
- Posterpräsentation (32)
- Forschungsbericht (5)
- Buchkapitel (1)
- Beitrag zu einem Sammelband (1)
- Dissertation (1)
- Sonstiges (1)
Schlagworte
- NDT (30)
- Reliability (22)
- Radiography (21)
- Human factors (17)
- Gedruckte Kopie bestellen (13)
- Simulation (11)
- Digital radiography (10)
- RT (10)
- Computed tomography (9)
- Non-destructive testing (7)
Organisationseinheit der BAM
- 8 Zerstörungsfreie Prüfung (299)
- 8.3 Radiologische Verfahren (299)
- 8.4 Akustische und elektromagnetische Verfahren (28)
- 8.5 Mikro-ZfP (11)
- 3 Gefahrgutumschließungen (10)
- 3.4 Sicherheit von Lagerbehältern (7)
- 9 Komponentensicherheit (6)
- 5 Werkstofftechnik (5)
- 5.3 Mechanik der Polymerwerkstoffe (4)
- 7 Bauwerkssicherheit (4)
High-energy radiography is traditionally used for the detection of defects in thick-walled, bulky components. It is also used for testing the integrity of components for civil and security-related applications, e.g. containers. The combination of high-energy sources with digital detector arrays or line cameras allows carrying out the tests either in a shorter time compared to film technique, or with higher contrast sensitivity.
The high-energy X-ray laboratory "HEXYLab" at BAM is a joint laboratory in which future users, manufacturers and scientists collaborate to initiate and develop joint development projects. The new universal manipulation system “HEXYTech” provides the engineering and technical base for meeting different requirements within HEXYLab.
Different types of trajectories for tube, object and detector can be programmed with a total of 13 rotational and linear axes. In particular, large objects with complex geometries can be examined. Measurements can be acquired as 2D images via standard radiography as well as 3D volumes from laminography or computed tomography reconstructions.
The general rules for the application of high-energy radiography with digital detectors (imaging plates, digital detector arrays) were determined within the framework of the European project "HEDRad" (High Energy Digital Radiography) and added to the standard DIN EN ISO 17636-2.
The paper gives an overview of the test technique and introduces several applications on the basis of experiments and reconstructed 3D- images.
The new standard ISO 176362:2013 'NDT of welds: Radiographic testing - Part 2: X- and gamma ray techniques with digital detectors' describes a complex procedure for film replacement by phosphor imaging plates and digital detector arrays. RT modeling software should consider these detector types, X-ray film, and the standard requirements for image quality. Practitioners expect the same visibility of image quality indicators (IQI) in the simulated radiographs as in the experimental exposures. The proposed benchmark test is based on the comparison of experimental radiographs taken at BAM with modeled ones of participants. The experimental setup and the determination of the equivalent penetrameter sensitivity (EPS) as described in the procedure of ASTM E 746 are used for quantitative evaluation of the achievable contrast sensitivity for step hole IQIs as considered in Annex B of ISO 17636-2. System classification data for Computed Radiography (CR) and film systems will be provided by BAM according to ISO 116991 for selected film systems and according to ASTM E 2446 for selected CR systems. The classification of films and digital detectors is based on the measurement of the dose response function, the basic spatial resolution (SRb) of the image, and the measured image noise, which depends on the detector efficiency, the quantum statistics, and the detector fixed pattern noise.
Ultrasonic examination of anisotropic inhomogeneous austenitic welds is challenging, because of the columnar grain structure of the weld leads to beam skewing and splitting. Modeling tools play an important role in understanding the ultrasound field propagation and optimization of experimental parameters during the ultrasonic testing of austenitic welds as well as the interpretation of the test results. In this contribution, an efficient theoretical model based on the ray tracing concepts is developed to calculate the ultrasonic fields in inhomogeneous austenitic welds quantitatively. The developed model determines the ultrasound fields by taking into account the directivity of the ray source, the inhomogenity of the weld as well as ray transmission coefficients. Directivity of the ray source in columnar grained austenitic materials (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. Ray energy reflection and transmission coefficients at an interface between two general columnar grained austenitic materials are calculated in three dimensions. The ray tracing model predictions on inhomogeneous austenitic weld material are compared against those from CIVA, a commercial non-destructive modeling and simulation tool. The ultrasonic modeling tools in CIVA are based on semi-analytical solutions. For beam propagation simulation, a so-called 'pencil method' is used, which involves modeling the probe as a set of individual source points, each radiating 'a bundle' of diverging rays into the medium and integrating those elementary contributions. Inhomogenity in the weld region is approximated by mapping the grain orientations on weld macrograph. Simulation results for ultrasonic field profiles for an austenitic weld are shown to be in good agreement with the corresponding experimental results.
A comparative study on the performance of digital detector systems for high energy applications
(2014)
A comparative study on the performance of digital detector systems for high energy applications
(2014)
For cast components reaching or exceeding total material thicknesses of 150mm, high energy sources such as linear accelerators or Betatrons are required in order to obtain reasonable exposure times. In this study, the performance of digital detector systems, involving imaging plates (IP) and digital detector arrays (DDA), was evaluated with respect to the testing class B requirements as formulated in the standard EN ISO 17636-2. As a reference, traditional radiographic film and a Cobalt-60 source was used. With film exposures, testing class B was achieved with Co-60 and Betatron (7.5 MV) at longer exposure times. The preliminary results show that the testing class B was not obtained with the examined digital detector arrays (DDA) and the high resolution imaging plates (IP) , even at 40, 60 and 80 minutes exposure time with a 7.5 MV Betatron. Class A was achieved using high resolution imaging plates with optimized metal filters between object and IPs and a high resolution DDA with intermediate Cu filters. Class A was also achieved applying a DDA with lower basic spatial resolution than required by Table B.13 of EN ISO 17636-2, but using the compensation principle as described in this standard. The next generation of digital detector arrays might potentially be able to obtain class B performance with the expected spatial resolution and sensitivity improvements.
One essential step on the way towards accurate quantitative simulation of radiographic testing is an accurate description of the utilized energy spectrum of X-ray photons. For use in general purpose simulation tools, the spectra of X-ray tubes have to be described by a model covering at least the intended range of applications. This range includes transmission tubes as well as direct beam tubes with varying angles of incidence and emission, for a number of typical target materials. In radiographic testing acceleration voltages frequently reach up to 450 kV for direct beam targets and up to 225 kV for transmission targets, with even higher voltages available or being developed. Currently used models are unable to cover the whole range of configurations.
Here a model is presented that employs a unified approach for simulating the photon energy spectra for transmission and direct beam targets composed of arbi-trary homogeneous materials. In order to achieve this, a detailed model of electron transport within the target is employed. The validity of the developed model is shown through comparisons with Monte Carlo simulations as well as measurements for a number of different configurations.
A model is presented that employs a unified approach for
simulating the photon energy spectra for transmission and direct
beam targets composed of arbitrary homogeneous materials. In order
to achieve this, a detailed model of electron transport within the
target is employed. The validity of the developed model is shown
through comparisons with Monte Carlo simulations as well as
measurements for a number of different configurations.