## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (13)
- Vortrag (9)
- Zeitschriftenartikel (7)
- Buchkapitel (4)
- Posterpräsentation (1)

#### Schlagworte

- Pfahlgründungen (4)
- Jet erosion (3)
- LBM-DEM (3)
- Micromechanical modelling (3)
- Numerical model (3)
- Offshore wind turbines (3)
- Pile foundations (3)
- Assessment criteria (2)
- Bridge transition zone (2)
- Cyclic loads (2)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (34)
- 7.2 Ingenieurbau (34)
- 7.4 Baustofftechnologie (1)

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.

This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided in two lectures.
The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here.
The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended.
Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of these two topics is illustrated with experimental results from a field testing campaign on real large-scale piles.

The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique.
The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique.

Design challenges for offshore wind-farms. From foundation mechanics to wind-farm aerodynamics
(2018)

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Then some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.

In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity.
The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously.

Erosive phenomena at the mesoscale – Perspectives and challenges using coupled LBM-DEM models
(2017)

The physical phenomena related to the erosion of granular materials by a fluid flow are ubiquitous and often present major challenges and threats to a wide range of civil engineering constructions and infrastructures. Catastrophic earth-dam failures and large sinkholes are just some of the possible outcomes of the different forms of erosion (a.o. surface erosion, suffusion, piping, backwards erosion, etc…). However, little is known about the actual mechanical origins of erosion, while the assessment of erodibility is generally performed by means of experimental tests and empirical correlations.
Here we provide a general overview of some current research models aiming to clarify the micromechanical phenomena and their macromechanical consequences taking place in different erosion scenarios. The employed numerical techniques rely on the coupling of two well-stablished particle methods for the fluid and solid phases, namely the Lattice Boltzmann Method (LBM) and the Discrete Element Method (DEM) respectively. Further ingredients of our numerical models include an elastoplastic cohesion model for intergranular solid bridges and a subcritical debonding model for the simulation of transient damage processes within the soil matrix.

Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion.

We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests.