## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (2)
- Beitrag zu einem Tagungsband (2)
- Vortrag (1)

#### Schlagworte

- Finite-element boundary-element method (5) (entfernen)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (5) (entfernen)

A combined finite-element boundary-element method for the dynamic interaction of the soil with flexible structures such as single piles or complete wind energy towers has been developed. Flexible piles in different soils are analysed in frequency domain. The different parameters such as the stiffness of the soil, the bending stiffness and the radius of the hollow pile are analysed for their influence on the complex compliances. The results have been determined as specific power laws which are different for the different load cases (horizontal, rocking, coupling) and for the different soil models (Winkler, continuum with constant, root-parabolic and proportional-linear stiffness variation). The strongest influence of the soil stiffness can be found for the homogeneous soil and the horizontal component. Winkler soils have a weaker influence than the corresponding continuous soils. An offshore wind energy tower has been modeled and calculated for wind and wave loads.

Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil.

The soilstructure interaction of elastic plates on homogeneous or layered soils excited by horizontally propagating waves is analysed. Large plates are modelled by a combined finite-element boundary-element method (FEBEM), whereas the response of infinitely long plates is calculated by a numerical integration in the frequencywavenumber domain. The finite-element boundary-element method yields the complete soilplate transfer function of frequency and distance whereas the frequencywavenumber solution of the infinitely long plate can serve as an approximation for long distances on a finitely long plate. The soilplate transfer function starts to decrease strongly at the coincidence frequency, where the bending stiffness equals the plate inertia. A strong decrease follows at mid frequencies and a strong reduction of less than 0.1 of the ground vibration is reached at high frequencies. Rules for the characteristic frequencies are derived from the numerical results clearly indicating the strongest influence of the soil stiffness and the weaker influence of the bending stiffness of the plate. The influence of the mass, length and width of the plate are shown to be limited in case of realistic parameters, but it should be noted that the reduction effects are less effective for layered soils and for nearer observation points.