## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

#### Referierte Publikation

- ja (83) (entfernen)

#### Schlagworte

- Damage detection (9)
- Structural health monitoring (6)
- Ground vibration (5)
- Automated operational modal analysis (4)
- Resonance (4)
- Subspace methods (4)
- Wind turbine (4)
- Axial force (3)
- Continuous dynamic monitoring (3)
- Cyclic loading (3)
- Damage localization (3)
- Dynamic test (3)
- Environmental/operational effects (3)
- Fatigue (3)
- Monitoring (3)
- Numerical model (3)
- Overhead transmission lines (3)
- Truss structures (3)
- Aberfan flowslide (2)
- Aerodynamic damping (2)
- Assessment criteria (2)
- Bayesian analysis (2)
- Bridge (2)
- Bridge transition zone (2)
- Crash-material (2)
- Crashkörper (2)
- Deterioration (2)
- Discrete element method (2)
- Energiedissipation (2)
- Energy dissipation (2)
- Explosionsbeanspruchung (2)
- Fassadenverankerung (2)
- Façade connector (2)
- Feature extraction (2)
- Finite element method (2)
- Finite-element boundary-element method (2)
- Force transfer (2)
- Imperfektion (2)
- Inspection (2)
- Layered soil (2)
- Mitigation (2)
- Modal parameters (2)
- Model updating (2)
- Numerical modelling (2)
- Offshore wind energy (2)
- Operational modal analysis (2)
- Optimization technique (2)
- Railway (2)
- Railway track (2)
- Reliability (2)
- SPH (2)
- Soil-building interaction (2)
- Sommerfeld effect (2)
- Statistical tests (2)
- Track-soil interaction (2)
- Train-track-bridge-interaction (2)
- Vehicle model (2)
- Vehicle-track interaction (2)
- Vibration (2)
- Accelerated ageing (1)
- Acoplamiento Método de los Elementos de Contorno-Método de los Elementos Finitos (1)
- Ambient excitation (1)
- Ambient vibration (1)
- Anwachsen (1)
- Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases (1)
- Automated system identification (1)
- Axle box measurements (1)
- Axle-load spectra (1)
- Base isolation (1)
- Baustoffe (1)
- Bearing capacitiy (1)
- Bemessungskonzeptblast loads (1)
- Berechnungs- und Bemessungsverfahren - Analysis and calculation (1)
- Blast loads (1)
- Boundary Element Method-Finite Element Method coupling (1)
- Box-Behnken (1)
- Building materials (1)
- CPT (1)
- Cable dynamics (1)
- Cohesionless granular soil (1)
- Compaction grouting (1)
- Compression (1)
- Compressive strength (1)
- Conception and design (1)
- Concrete (1)
- Conductors (1)
- Constitutive modeling (1)
- Continuously inhomogeneous soils (1)
- Covariance analysis (1)
- Crack (1)
- Crashmaterial (1)
- Cyclic loads (1)
- DUCON® (1)
- Damage (1)
- Damage quantification (1)
- Decision matrix analysis (1)
- Design guideBauwerke - Buildings (1)
- Detection of structural change (1)
- Digital Image Correlation (DIC) (1)
- Downburst (1)
- Driving Versuche - Experimental set-ups (1)
- Ductility (1)
- Dynamic load test (1)
- Dynamic pile testing (1)
- Dynamic soil-structure interaction (1)
- Dynamik (1)
- E-modulus (1)
- Einseitenschweißung (1)
- Elastic track elements (1)
- Elastische Gebäudelagerung (1)
- Emission (1)
- Entwurf und Konstruktion (1)
- Entwurf und Konstruktion - Conception and Design (1)
- Environmental and operational effects (1)
- Environmental changes (1)
- Environmental/operational effect (1)
- Ermüdung (1)
- Erosion onset (1)
- Evolutionary computing (1)
- Experimental optical techniques RIM-PLIF (1)
- Experimental verification (1)
- Experimentelle Untersuchung (1)
- Extrinsic Fabry-Perot interferometer (1)
- FEBEM and simplified methods (1)
- FEM-Simulation (1)
- Fatigue cracks (1)
- Fault detection (1)
- Feldversuch (1)
- Fibre Bragg grating (1)
- Fibre optic strain sensor (1)
- Field measurements (1)
- Field test (1)
- Field tests (1)
- Flexible plate (1)
- Floor amplification (1)
- Fluidised geomaterials (1)
- Fly ash (1)
- Foundation reduction (1)
- Frequency-wavenumber method (1)
- Geometric trackbed irregularities (1)
- Grouted connection (1)
- Grouting (1)
- Hard object collisions (1)
- High temperature low sag conductors (1)
- Historische Brückenlager (1)
- Hypothesis testing (1)
- Hypothesis tests (1)
- Impact (1)
- In-situ measurements (1)
- Inclination (1)
- Increase (1)
- Inspection planning (1)
- Interacción dinámica suelo-estructura (1)
- Inverse problem (1)
- Jet erosion (1)
- Jet hydrodynamics (1)
- Jet impingement (1)
- Joint capacity (1)
- Laboratory tests (1)
- Laminar flow (1)
- Landslide propagation modelling (1)
- Langzeitmessung (1)
- Lattice Boltzmann method (1)
- Layered soils (1)
- Lebensdauerabschätzung (1)
- Liquefaction analysis (1)
- Load vector (1)
- Load vectors (1)
- Long-term loading (1)
- Mast- und Turmbau - Masts and towers (1)
- Material Point Method (MPM) (1)
- Material behavior (1)
- Materialkennlinie (1)
- Measurements (1)
- Metakaolin (1)
- Micro-reinforcement (1)
- Microsilica (1)
- Mix design (1)
- Mixed formulation (1)
- Mobile elements (1)
- Modal properties (1)
- Modal property (1)
- Mouthguard (1)
- Multi-beam model (1)
- Multi-beam-on-support model (1)
- Multimodal solution (1)
- Multiple linear (1)
- Multiple linear regression (1)
- Non-ballasted track (1)
- Non-synoptic wind event (1)
- Nonlinearities (1)
- Normal strength concrete (1)
- Novelty analysis (1)
- Numerical modeling (1)
- Numerical response (1)
- Offshore (1)
- Offshore foundation (1)
- Offshore foundations (1)
- Offshore pile foundation (1)
- Offshore steel structures (1)
- Offshore structures (1)
- Offshore wind turbines (1)
- Offshore-Gründung (1)
- Offshore-Windenergie (1)
- Offshore-Windenergieanlage (1)
- Overhead transmission line (1)
- Parametric excitation (1)
- Particle image velocimetry (1)
- Perzyna viscoplasticity (1)
- Pile bending stiffness (1)
- Pile foundation (1)
- Pile integrity test (1)
- Pile monitoring (1)
- Piles (1)
- Plate-soil interaction (1)
- Pore pressure accumulation (1)
- Prediction (1)
- Prestressed concrete bridge (1)
- Principal Component Analysis (1)
- Principal component regression (1)
- Protective component (1)
- Quasi-static and dynamic tests (1)
- Rail pad (1)
- Railway measurement campaign (1)
- Rammung (1)
- Ratcheting convective cell (1)
- Rechenmodelle (1)
- Reduction (1)
- Rehabilitation (1)
- Reibung (1)
- Residual evaluation (1)
- Resonancia en edificaciones (1)
- Resonant response (1)
- Risk (1)
- Riveted viaducts (1)
- SHM (1)
- Sand (hydraulic) (1)
- Schadensdetektion (1)
- Schrauben (1)
- Schutzbauteil (1)
- Schweißnahtausbildung (1)
- Seismic crosshole (1)
- Seismic tomography (1)
- Shear keys (1)
- Shock absorbtion (1)
- Sleeper pad (1)
- Smoothed particle hydrodynamics (1)
- Soil erosion (1)
- Soil liquefaction (1)
- Soil stiffness (1)
- Soil-pile interaction (1)
- Stahlhochbau - Steel buildings (1)
- Stahlpfahl, gerammt (1)
- Stahlwasserbau - Steel structures for hydraulic engineering (1)
- Static load test (1)
- Statistical evaluation (1)
- Statistical pattern recognition (1)
- Steel pile, driven in (1)
- Stereo photogrammetry (1)
- Strain (1)
- Strain measurement (1)
- Strength (1)
- Structural modification (1)
- Structural reliability (1)
- Structural systems (1)
- Structural vibration monitoring (1)
- Structure (1)
- Structure integrated sensor (1)
- Subset simulation (1)
- Subspace-based detection (1)
- Subspace-based method (1)
- Subspace-basierte Verfahren (1)
- System identification (1)
- Temperature effect (1)
- Temperature effect rejection (1)
- Temperature modeling (1)
- Test site (1)
- Tower-nacelle system (1)
- Track (1)
- Track deformation (1)
- Track settlement (1)
- Track vibration (1)
- Track-soil and vehicle-track resonances (1)
- Tragfähigkeit (1)
- Train induced ground vibration (1)
- Train-track-interaction (1)
- Transition zone (1)
- UHPC (1)
- Uncertainty bounds (1)
- Uncertainty in reference (1)
- Under sleeper pads (1)
- Varying track stiffness (1)
- Vibration measurements (1)
- Vibration reduction (1)
- Vibration-based structural health monitoring system (1)
- Vibrations (1)
- Viscosity (1)
- Vorspannung (1)
- Wave excitation (1)
- Wavenumber method (1)
- Wind energy tower (1)
- Wind loading (1)
- Wind tunnel (1)
- Windenergieanlage (1)
- Workability (1)
- floor vibration (1)
- modal analysis (1)
- temperature (1)
- wave analysis (1)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (83) (entfernen)

In granular soils, long-term cyclically loaded structures can lead to an accumulation of irreversible strain by forming closed convective cells in the upper layer of the bedding. The size of the convective cell, its formation and grain migration inside this closed volume have been studied with reference to different stiffness of the embedded structure and different maximum force amplitudes applied at the head of the structure.
This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in a dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Furthermore, the ratcheting convective cell was also simulated with DEM with the aim of extracting some micromechanical information. The main results regarded the different development, shape and size of the convection cell and the surface settlements.

Im Rahmen des Forschungsprojekts „FIT“ wurden Ermüdungsfestigkeitsuntersuchungen an geschweißten Konstruktionsdetails, die häufig in Gründungsstrukturen von OffshoreWindenergieanlagen (OWEA), aber auch im Stahlbrückenbau eingesetzt werden, durchgeführt. Der Schwerpunkt der Untersuchungen wurde auf einseitig geschweißte Kreishohlprofile (KHP) gelegt. Für einseitig stumpfgeschweißte Kreishohlprofile wurden die derzeitigen auf unzureichender Versuchsbasis erstellten Kerbfalleinstufungen geltender Regelwerke überprüft. Hierzu wurden umfangreiche experimentelle Untersuchungen zur Ermüdungsfestigkeit dieses Details durchgeführt. Die den Ermüdungswiderstand maßgeblich beeinflussenden Parameter, wie vorhandene geometrische Imperfektionen und Schweißnahtausbildung, wurden identifiziert, bewertet und deren Einfluss im Rahmen numerischer Berechnungen untersucht. Basierend auf diesen Ergebnissen wurde eine Kerbfallempfehlung erarbeitet, die eine zutreffende Lebensdauerabschätzung ermöglicht. Diese Kerbfallempfehlung soll als Grundlage für die zukünftige Aufnahme in Normen und Regelwerke dienen.

Die Forderung, für repräsentative Bauwerke wie Botschaften und Flughäfen auch außergewöhnliche Lasten aus Explosion zu berücksichtigen, wurde in jüngerer Vergangenheit zunehmend gestellt. Das aufgrund dieser Lasten zu erwartende Schadensausmaß kann durch den Einsatz von energiedissipierenden Schutzbauteilen in der Fassadenbefestigung begrenzt werden. Die Dissipation der Explosionsenergie in den Schutzbauteilen kann beispielsweise über ein Crashmaterial erfolgen. In diesem Aufsatz werden Untersuchungen an zementgebundenen Materialien, die diesem Zweck dienen sollen, vorgestellt. Der Einfluss unterschiedlicher Zusätze auf die für ein Crashmaterial maßgebenden Eigenschaften wird in einer Parameterstudie untersucht. Als besonders geeignet wird ein Material identifiziert, bei dem die Zugabe eines Gasbildners das Matrixgefüge im Hinblick auf das gewünschte Kraft-Verformungs-Verhalten positiv verändert. Dynamische Versuche mit diesem Material geben Aufschluss über dessen Komprimierungsverhalten bei hohen Stauchraten.-----------------------------------------------------------------------------------------------------------------------------------------------
In the past few years public awareness of the need to protect structures against blast effects has risen. Energy dissipating protective components placed at the façade connectors allow protecting people in the building as well as the primary building structure from damage due to blast loads. One possibility to dissipate the blast energy is using protective components with crash material. This paper presents tests on cementitious crash materials studying the effect of different additives to the compression-behavior of the material. Additional experiments enable analyzing the material behavior under static and dynamic test conditions.

Energiedissipierende Fassadenverankerung mit Crashmaterial für explosionsbeanspruchte Gebäude
(2014)

Wenn repräsentative Bauwerke wie Botschaften und Flughäfen außergewöhnlichen Lasten aus Explosion ausgesetzt sind, dann kann das Ausmaß des zu erwartenden Schadens aus einer solchen Belastung durch den Einsatz von energiedissipierenden Schutzbauteilen in der Fassadenverankerung begrenzt werden. Bisher ist über das Tragverhalten solcher Schutzbauteile wenig bekannt. In diesem Aufsatz werden Konstruktion und Wirkungsweise einer Verankerung für vorgehängte Fassaden vorgestellt, die in der Lage sind, einen Teil der Stoßenergie über Verformung eines Crashmaterials zu dissipieren. Versuche an einer bauteilähnlichen Konstruktion liefern Informationen über das Tragverhalten der Fassadenverankerung, insbesondere bei dynamischen Belastungen. Aus den Ergebnissen wird ein Konzept für die Vordimensionierung der vorgestellten Schutzbauteile abgeleitet.-----------------------------------------------------------------------------------------------------------------------------------------------------------
In the past few years public awareness of the need to protect structures against blast effects has risen. Blast wave energy is transmitted to the supporting structure by its façade connectors. Energy dissipating protective components placed at the connectors allow protecting people in the building as well as the primary building structure from damage. In this paper we present a protective component that dissipates blast energy by crash material. The report explores the system's fundamentals of operation from an experimental point of view. The results of dynamic tests are the basis of a design concept for the protective components.

The local asymptotic approach is promising for vibration-based fault diagnosis when associated to a subspace-based residual function and efficient hypothesis testing tools. It has the ability of detecting small changes in some chosen system parameters. In the residual function,the left null space of the observability matrix associated to a reference model is confronted to the Hankel matrix of output covariances estimated from test data. When this left null space is not perfectly known from a model, it should be replaced by an estimate from data to avoid model errors in the residual computation. In this paper, the asymptotic distribution of the resulting data-driven residual is analyzed and its covariance is estimated, which includes also the covariance related to the reference null space estimate. The advantages of the data-driven residual are demonstrated in a numerical study, and the importance of including the covariance of the reference null space estimate is shown, which increases the detection Performance.

Automated modal analysis for tracking structural change during construction and operation phases
(2019)

The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions.

Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems.
In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data.

Aerodynamic damping is a decisive parameter influencing the dynamic response of overhead transmission line conductors. Methods of how to account for the effects of aerodynamic damping differ significantly and so might do the results. In this work, the source of aerodynamic damping being the result of the relative velocity between the structure and wind flow will be revised. Based on wind tunnel tests and validated by simulations, the differences of linear movement compared to a pendulum movement of a sagging cable are shown. The reasons for that Deviation are the large deflections, resulting in a movement non-parallel to the acting wind flow. For analysis in frequency domain, it is not possible to incorporate aerodynamic damping implicitly by fluid structure interaction. If the dynamic movement can be linearized at a working point of the mean deflection, a modification to the linear approach is suggested. This approach is validated by simulation with a finite element model of an existing overhead transmission line, calibrated with full scale measurements. Aerodynamic damping is incorporated in time step analysis by Rayleigh damping and modal damping. The differences between both approaches are emphasized and modal damping is shown to be the most adequate.

Measurements of downburst wind loading acting on an overhead transmission line in Northern Germany
(2017)

Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model.

Overhead transmission lines are very sensitive structures in regards to wind action. The cables, spanning over a few hundred meters contribute in particular to the overall action on the suspension towers. These slender structures incorporate both structural nonlinearities from the large deformation of the cables and aerodynamic nonlinearities which need to be accounted for when it is to estimate the system response to strong wind events. In this work, a finite element procedure is presented to model an existing power line section using nonlinear cable elements. The wind force is assumed quasi-steady with force coefficients determined in wind tunnel test on a conductor section. Further, aerodynamic damping is incorporated by considering the relative velocity between cable nodes and oncoming wind flow. The results are compared with on-site measurements of the cables support reaction. The results show a significant effect of damping since almost no resonant amplification is visible both in observation and simulation. In addition, wind tunnel tests approved aerodynamic damping to be large for the system of sagging cables, but nonlinear in its nature. It is concluded, that the dynamic response of overhead transmission line cables has to be modeled with care, considering all sources of nonlinearities. That is of particular interest in case of random excitation such as wind because the peak response depends on the probability distribution of the system's response.

Die Beanspruchung von Freileitungen erfolgt hauptsächlich durch Naturlasten. Dabei spielt für die bemessungsbestimmenden Lastfälle häufig der Wind eine entscheidende Rolle. Die Leiter, die mehrere hundert Meter weit spannen, tragen einen wesentlichen Anteil zur Gesamtbeanspruchung von Tragmasten bei, die wiederum Eigengewicht und Windlasten der Leiter zwischen zwei Abspannmasten abtragen. Wenn die Reaktion der Seile auf Starkwindereignisse abgeschätzt werden soll, müssen sowohl geometrische Nichtlinearitäten durch die großen Verformungen wie auch aerodynamische Nichtlinearitäten berücksichtigt werden. Insbesondere für die Anwendung und Berücksichtigung in Bemessungsvorschriften werden hierfür Vereinfachungen vorgenommen. In diesem Beitrag wird eine umfassende Untersuchung vorgestellt, über Naturmessungen, FEM-Simulationen kombiniert mit Windkanalversuchen und generierten Windzeitreihen. Ziel ist es, existierende Bemessungsvorschriften im Hinblick auf die Abschätzung der Beanspruchung aus Wind auf Leiter zu validieren. Hierbei sind insbesondere die Turbulenzannahmen und das dynamische Verhalten von weitgespannten Leitern wichtig, um die Extremschnittgrößen zu beschreiben. Mithilfe von so genannten Spannweitenfaktoren sollen die relevanten Parameter, wie Spannweite und Windturbulenz, bei der Beanspruchungsabschätzung berücksichtigt werden.

The paper focuses on a recently launched project of wind measurements along a high voltage overhead transmission line. For reliable information on the actual horizontal distribution of the wind flow, 13 positions along two spans of an overhead electrical line of about 400 m length each are selected for wind measurements. Simultaneously, the structural response is measured at the towers. Preliminary analyses aim at the system identification of long span transmission lines exposed to gusty wind by derivation of a so called joint acceptance function which describes the admittance from wind velocity to the system's response. It can be shown that measured structural response can accurately be described using a statistical model which accounts for the irregularity of the wind as well as the structures behaviour.

Overhead transmission line cables under wind gust loading - measurements and numerical simulations
(2014)

Overhead transmission lines with conductor cables spanning over a few hundred meters are highly
sensitive to the action of wind. Particularly wind acting on the cables signifies a major load on the
suspension towers. In order to identify critical loading parameters and the load-response
mechanism of those structures, measurements are carried out along a high voltage overhead
transmission line capturing the acting wind field as well as the structural response of the cables. A
finite element model of the structure is built and used to simulate the system's response. A method
is presented which allows generating a complete wind field for all the models nodes
incorporating measured wind velocities and estimated parameters of the acting wind. The full
scale measurements of both action and reaction will be compared to the numerical results.

Accelerated electrical and mechanical ageing tests of high temperature low sag (HTLS) conductors
(2017)

As part of the Best Paths project, work package 6 of the DEMO #4 combines the R&D tasks for repowering of transmission overhead line corridors. The aim of the presented research work is the electrical and mechanical investigation of high temperature low sag conductors (HTLS) and their respective accessories. In contrast to the conventional ACSR (aluminum conductor steel reinforced) conductors, new material combinations of HTLS technologies result in a better sagging behavior combined with an operation at higher temperatures. Because of missing operational experience, the ageing behavior of HTLS conductor technologies shall be analyzed regarding the operating parameters such as electrical, thermal and mechanical load.

Repair is an indispensable part of the maintenance of structures over their lifetimes. Structural grouting is a widely used remediation technique for concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. A structural grout system should be injectable in narrow spaces and hence include ingredients with finer particles. Ultrafine cements are ideal for these type of demanding grouts due to their superior properties compared to that of the less expensive, but coarser ordinary Portland cement (OPC). Supplementary cementitious materials (SCMs) are often used to replace OPC clinker based binder in order to modify certain properties and to reduce costs. The most commonly used SCMs are fly ash (FA), and ground granulated blast furnace slag (GGBS). For various special applications microsilica (MS), and metakaolin (MK) are also used. Identifying the optimum replacement contents of OPC by SCMs are a challenge during the design of such grouts. The aim of this experimental study is to investigate the effect of the selected SCMs (FA, MS and MK) on the slump flow, time of efflux, viscosity, shrinkage, and compressive and flexural strength of ultrafine cement based grouts with constant water-binder ratio and superplasticizer content. The test program was formulated using Box-Behnken design principles. Maximum percentages of replacement with ultrafine cement was 6% by volume of cement for MS and 16% for FA, and MK. The results suggest that most investigated grouts have the potential to be used for structural applications. The appropriate quadratic models are then formulated through statistical tools and presented as response surfaces. The trends indicate that fly ash improves the rheological properties, whereas microsilica and metakaolin positively affect shrinkage and mechanical properties to some extent. Based on the influence of SCMs and priorities among the properties, Decision Matrix Analysis (DMA) is carried out to select the most suitable ones among the SCMs. The analysis suggests that microsilica and fly ash are more suitable as SCMs than metakaolin without affecting the properties.

Current trend suggests that global energy consumption will increase in the future. This growing energy demand and advancement of technology lead to explore all potential offshore fossil and non-fossil energy sources, necessitating erection of exploration and production structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with their maintenances. Cylindrical grouted joints provide suitable connections between steel substructure and foundation in these offshore platforms and wind structures especially monopiles for ease of installation. However, these are composite connections with exterior sleeve, interior pile and infill grout. The capacity of these connections is affected by number of factors. The literature over last four decades by numerous researchers has shown the development of these connections with increasingly higher capacities and influences on these capacities due to various factors. This paper provides a comprehensive review on the factors affecting the connection capacity along with technical challenges for the future. Critical aspects and shortcomings of the current connection systems and potential solutions may be sought after for these issues are also discussed.

Bei Monopfahlgründungen von Offshore-Windenergieanlagen wird die Verbindung zwischen Monopfahl und Übergangsstück als geschraubter Ringflansch ausgeführt. Die zunehmende Leistungsfähigkeit der Windenergieanlagen führt zu immer größeren Schnittgrößen in diesem Anschluss. In der Folge erhöhen sich nicht nur die Querschnittsabmessungen, sondern es kommen auch zunehmend größere Schrauben zum Einsatz. Da die einschlägigen Regelwerke zur Bemessung dieser Verbindungen nicht für Schrauben der Größen M64 oder M72 konzipiert wurden, stellt sich die Frage der Übertragbarkeit auf solche Anwendungsfälle.
Im Rahmen des Aufsatzes werden Einflüsse diskutiert, die eine Herabsetzung der Schraubentragfähigkeit verursachen könnten. Diese Einflüsse, vornehmlich geometrische Imperfektionen, werden systematisch untersucht und ergänzend in praxisrelevanten Beispielen bewertet. Die somit gewonnenen Erkenntnisse werden für die abschließende Beurteilung der großen Schrauben in Ringflanschverbindungen herangezogen.

An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model. The updated system reliability is then obtained through coupling the updated deterioration model with a probabilistic structural model. The underlying high-dimensional structural reliability problems are solved using subset simulation, which is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue.

A software prototype is developed for assessing and updating the reliability of single-cell prestressed concrete box girders subjected to chloride-induced reinforcement corrosion. The underlying system model consists of two integrated sub-models: a condition model for predicting the deterioration state of the box girder and a structural model for evaluating the overall system reliability. The condition model is based on a dynamic Bayesian network (DBN) model which considers the spatial variation of the corrosion process. Inspection data are included in the calculation of the system reliability through Bayesian updating on the basis of the DBN model. To demonstrate the effect of partial inspections, the software prototype is applied to a case study of a typical highway bridge with six spans. The case study illustrates that it is possible to infer the condition of uninspected parts of the structure due to the spatial correlation of the corrosion process.

Identifying optimal inspection and repair strategies for offshore jacket structures is a challenging task. We pre-sent an approach, which is based on recent developments in the field of risk-based operation and maintenance planning at the structural system level. The approach utilizes heuristics to define inspection and repair strate-gies at the system level and to reduce the search space of possible strategies. For each defined strategy, the expected service life cost of inspection, repair and failure is evaluated based on simulated inspection and re-pair histories. Subset simulation is applied to compute the conditional repair and failure probabilities required for this analysis. It also forms the basis for simulating inspection and repair histories. The strategy that mini-mizes the expected service life cost is the optimal one in the set of pre-selected strategies. The underlying condition and performance model accounts for the stochastic dependence among the deterioration states of the different structural elements and the structural redundancy. The approach is demonstrated in a case study considering a jacket-type frame. In this study, we essentially vary the inspection interval, the minimum num-ber of inspected components and the target reliability, and identify the combination that minimizes the ex-pected total service life cost.

Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load Tests and pile integrity tests.

The aim of this project is to get deeper insight into the fatigue behaviour of concrete under cyclic compressive loading. It focuses on the evaluation and modelling of the entire damage process during life-cycle by means of various non-destructive measuring techniques. In numerous tests on cylinders h/d = 30/10 cm under different cyclic loading conditions, the crack development and the damage evolution are monitored using acoustic emission analysis and ultrasonic velocity measurement. The final aim will be the definition of a damage descriptor D based on experimental observations, which can be implemented into a numerical model on a meso-mechanical level.

Two research institutes are currently evaluating dynamic pile load testing methods on bored piles in a sandy environment. A test site has been prepared, which ensures comparable conditions at all pile locations and provides detailed knowledge on soil and other boundary conditions. A detailed site investigation program was performed at a dedicated area on the BAM test site south of Berlin, Germany. Undisturbed soil samples have been collected from boreholes. In addition several CPTs and geophysical surveys have been performed. The site consists mainly of well graded, partly well compacted medium sands. But at depth an inhomogeneous gravel layer was detected in some parts of the site. This has led to a redesign of the test piles. They are now shorter than originally intended to avoid gravel layers at depth and to ensure that the drop weight available for dynamic test is capable to mobilize the required load.

The stochastic dynamic damage locating vector approach is a vibration-based damage localization method based on a finite element model of a structure and output-only measurements in both reference and damaged states. A stress field is computed for loads in the null space of a surrogate of the change in the transfer matrix at the sensor positions for some values in the Laplace domain. Then, the damage location is related to positions where the stress is close to zero. Robustness of the localization information can be achieved by aggregating results at different values in the Laplace domain. So far, this approach, and in particular the aggregation, is deterministic and does not take the uncertainty in the stress estimates into account. In this paper, the damage localization method is extended with a statistical framework. The uncertainty in the output-only measurements is propagated to the stress estimates at different values of the Laplace variable, and these estimates are aggregated based on statistical principles. The performance of the new statistical approach is demonstrated both in a numerical application and a lab experiment, showing a significant improvement of the robustness of the method due to the statistical evaluation of the localization information.

A theorem on damage localization from flexibility changes has been proven recently,
where it has been shown that the image of the change in flexibility δF between
damaged and reference states of a structure is a basis for the influence lines of stress
resultants at the damaged locations. This damage localization approach can operate on
output-only vibration measurements from damaged and reference states, and a finite
element model of the structure in reference state is required. While the localization
approach is based on purely mechanical principles, an estimate of the image of δF is
required from the data that is subject to statistical uncertainty due to unknown noise
excitation and finite data length. In this paper, this uncertainty is quantified from the
measurements and a statistical framework is added for the decision about damaged
elements. The combined approach is successfully applied to a numerical simulation
and to a cantilever beam in a lab experiment.

Vibration-based model updating and identification of multiple axial forces in truss structures
(2017)

Safety assessment of existing iron and steel truss structures requires the determination of the axial Forces and corresponding stresses in truss structural members. The results of the axial force determination can be integrated as part of a structural health Monitoring scheme for existing trusses. In this work, a methodology is proposed to identify multiple axial forces in members of a truss structure based on the modal parameters. Vibration test allows the identification of the natural frequencies and mode shapes, globally of the truss structure as well as locally of the individual bars. The method calibrates the numerical model of the truss structure using a genetic algorithm and strategic validation criteria. The validation criteria are based on the identified natural frequencies and global mode shapes of the truss structure as well as information of the axial forces in the individual bars of the truss, which are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the single bars based on an analytical-based algorithm. The calibration allows the identification of the axial forces in all bars of the truss structure. For mode pairing strategy, a technique makes use of the enhanced modal assurance criteria with the calculation of the modal strain energies.
Moreover, the modal strain energies are also used to select the relevant local mode shape of the individual bars. The feasibility and accuracy of the proposed methodology is verified by laboratory experiments on several truss structures. In situ tests on existing trusses are intended. The results from one of the laboratory tested structures, i.e. a two-bar system, are included in this paper.

This paper is concerned with the inverse identification of the stress state in axially loaded slender members of iron and steel truss structures using measured dynamic data. A methodology is proposed based on the finite element model updating coupled with nature-inspired optimization techniques, in particular the particle swarm optimization. The numerical model of truss structures is calibrated using natural frequencies and mode shapes from vibration tests, as well as additional information of the axial forces in selected truss members based on the experimentally identified modal parameters. The results of the identification are the axial forces or corresponding stresses in truss structures and the joint rigidity in relation to pinned and rigid conditions. Attention is given to several examined aspects, including the effects of the axial tensile and compressive forces on the dynamic responses of trusses, mode pairing criteria, as well as modeling assumptions of joints and the use of a joint rigidity parameter. Considering the pairing of modes, it is performed by adapting an enhanced modal assurance criterion that allows the selection of desired clusters of degrees-of-freedom. Thus, information extracted from the measurements related to specific modes is utilized in a more beneficial way. For modeling of joints, the numerical model of a truss structure includes rotational springs of variable stiffness to represent semi-rigid connections. Moreover, a fixity factor is introduced for practical estimation of the joint flexibility. The effectiveness of the proposed methodology is demonstrated by case studies involving simulated and laboratory experimental data.

This paper describes the experimental calibration of an existing Wiegmann–Polonceau roof truss based on modal parameters. Dynamic tests allowed the determination of the natural frequencies and mode shapes of the global truss and of individual truss members. The global and local modal configurations as well as coupled vibration of truss members are discussed. In addition, as truss members are axially loaded, the effect of stress stiffening on the modal parameters is considered. Moreover, several finite element models with different modelling assumptions for the details of the connections and member geometrical characteristics such as gusset plates and turnbuckles were developed. A suitable numerical model was chosen to represent the truss structural behavior. This paper focuses on the local measurement and analysis strategies applied to single truss members. The possibility of using a local analysis method, namely methods that consider individual members as part of a structure, is demonstrated to assess the behavior of the global truss structure. The comparison of the results after calibration reveals a very good correlation between the experimentally identified and numerically estimated modal parameters of the historic truss.

Operational modal analysis and vibration based damage detection of engineering
structures have become important issues for Structural Health Monitoring (SHM) and
maintenance operations, e.g. on transport infrastructure. Methods from control
engineering have been adopted and converted for the application on civil structures.
Approaches like subspace-based system identification combine excellent theoretical
properties under the unknown excitation properties of a structure with practical
usefulness.
In this paper, the implementation of covariance-driven stochastic subspace
identification (SSI) on the smart wireless sensor platform PEGASE is described.
Special care is taken about the fast implementation of this technique since the
computations are embedded on the platform and perform in real-time. The most
efficient and current version of subspace algorithms has been implemented. Efficiency
and memory consumption are primary criteria in this implementation.
First validated results will be given for each step of the algorithms: crosscorrelation
on natural inputs signal from sensors; Hankel matrix output; SSI
implementation using the LAPACK library to get a SVD, pseudo-inverse, eigenvalues
etc. Results validation has been correlated between PEGASE implementation and the
previous processing in static situation: the same data was collected by wired sensors
and data-loggers, then, later, processed on a PC using traditional Matlab software.
In parallel, from an engineering point of view, a description of the PEGASE
wireless platform will be given: generic usage, wide capacities, embedded Digital
Signal Processing (DSP) processor and Library over a small embedded Linux
Operating System, a very accurate synchronization principle based on a GPS/PPS
principle, etc. Perspectives about a complete technical in-situ installation will also be
given.

The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness interface element of Beer is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The Mohr-Coulomb and Clough and Duncan models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of elasto-plasticity such as: Lashkari and Mortara were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as: relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end.

Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility.

Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression
(2015)

Conventional approaches to model fatigue failure are based on a characterization of the lifetime as a function of the loading amplitude. The Wöhler diagram in combination with a linear damage accumulation assumption predicts the lifetime for different loading regimes. Using this phenomenological approach, the evolution of damage and inelastic strains and a redistribution of stresses cannot be modeled. The gradual degration of the material is assumed to not alter the stress state. Using the Palmgren–Miner rule for damage accumulation, order effects resulting from the non-linear response are generally neglected.
In this work, a constitutive model for concrete using continuum damage mechanics is developed. The model includes rate-dependent effects and realistically reproduces gradual performance degradation of normal strength concrete under compressive static, creep and cyclic loading in a unified framework. The damage evolution is driven by inelastic deformations and captures strain rate effects observed experimentally. Implementation details are discussed. Finally, the model is validated by comparing simulation and experimental data for creep, fatigue and triaxial compression.

This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms.
This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation.

A mechanical structure supported by nonlinear springs subjected to an external load is considered. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. If not all of the parameters are known, but the load and the displacement are measured at one location, an inverse problem exists. In the presented problem the nonlinear springs are unknown and have to be determined. At first glance a problem needs to be solved, which is underdetermined due to the number of unknown variables. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solver. This knowledge can play a decisive role in identifying the system properties and it can be easily included as boundary condition when applying evolutionary algorithm. This article examines how and under what conditions the spring resistances can be identified. The procedure is exemplified at a mechanical system of a pile foundation.

A prototype of wind turbines in 5 megawatt dass was built and tested at the first German offshore wind energy test fteld in the North Sea. In order to investigate dynamic behaviors under a complex state of loads, a continuous dynamic monitoring System was implemented by Federal Institute for Material Research and Testing (BAM). It recorded structural responses and environmental/operational variables from November 2007 to October 2009.
This paper presents significant resonance phenomenon due to the interaction in the tower-nacelle System under operational conditions. Modal parameters are automatically estimated by the poly reference Least Square Complex Frequency domain (p-LSCF) method. Campbell plot demonstrates that a three-blade passage frequency and its multiples f3n match with the natural frequencies of the wind turbine System in several modal Orders. The damping estimates decrease and the Vibration amplitude increase significantly. A control System is necessary to minimize the excessive vibrations.

Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon
(2015)

This paper is focused on a resonance phenomenon of a wind turbine system in 5 MW class, on the basis of dynamic signals acquired continuously from the tubular tower under normal operational conditions during two years.
Firstly, technique specifications of the wind turbine system are introduced and a finite element model is developed to characterize the structural dynamic properties. The following part describes the continuous dynamic monitoring system integrated with an automated operational modal analysis procedure using the poly-reference Least Squares Complex Frequency domain (p-LSCF) method. Subsequently, variations and mutual relationships of environmental/operational factors such as vibration amplitude, temperature, wind speed, rotation speed of blades, pitch angle and nacelle direction are also presented. Finally, significant resonance is observed due to the fundamental frequency of the tower matching with the harmonic frequency induced by the rotation of three blades. As the rotation speed of rotor approaches to 8 rpm, the vibration amplitude of the tower increases significantly and the corresponding damping value decreases. With the further rising wind velocity, the rotation speed of blades stops increasing and the input energy just contribute to accumulate the vibration amplitude of tower. Such observation indicates the Sommerfeld effect that aggravates the resonance phenomenon. A vibration control device is necessary to minimize the excessive structural responses.
A companion paper will further discuss the environmental/operational effects on dynamic properties of the wind turbine system under the operational conditions.

The second part of these companion papers mainly researches environmental/operational influences on structural dynamic properties under normal operational conditions during two years, in order to extract a statistical based damage-sensitive indicator for health monitoring of a wind turbine system.
The correlation analyses between experimental identified frequencies, damping values as well as mode shapes and environmental/operational factors such as rotation speed of blades, wind speed, pitch angle, temperature and nacelle direction are presented. It is observed that the frequency estimates are influenced by the nacelle position, the activation of rotor, the rotation speed of blades and the wind speed as well as the temperature. Regarding to the damping estimates, they are mainly associated with variation of the aerodynamic damping due to the increasing wind speed. Besides, the resonance phenomenon is also observed in higher modes. The harmonic frequencies due to blades passing by tower are found and the corresponding damping value decreases. Moreover, the mode shapes in some modes are strongly affected by the position of the nacelle.
Subsequently, two types of simulated damage including the reduction of stiffness in both the rotor blade and the tubular tower are successfully detected by applying the Principal Component Analysis (PCA) based methods to these temperature-sensitive frequency estimates. Comparison of change of the extracted health features indicates that they are more sensitive with the tower damage.

This work describes a vibration-based structural health monitoring of a prestressed-concrete box girder bridge on the A100 Highway in Berlin by applying statistical pattern recognition technique to a huge amount of data continuously collected by an integrated monitoring system during the period from 2000 to 2013. Firstly, the general condition and potential damage of the bridge is described. Then, the dynamic properties are extracted from 20 velocity sensors. Environmental variability captured by five thermal transducers and traffic intensity approximately estimated by strain measurements are also reported. Nonlinear influences of temperature on natural frequencies are observed. Subsequently, the measurements during the first year are used to build a baseline health index. The multiple linear regression (MLR) method is used to characterize the nonlinear relationship between natural frequencies and temperatures. The Euclidean distance of the residual errors is calculated to build a statistical health index. Finally, the indices extracted from the following years gradually deviate; which may indicate structural deterioration due to loss of prestress in the prestressed tendons.

This paper presents the development of a continuous dynamic monitoring System and its applications to different structures, with the purpose of understanding structural real behaviours under operational conditions and detecting early structural modifications. The first part of paper introduces a complete continuous dynamic System, consists of signal acquisition and communication, automated signal processing and management, investigation of the interaction between structures and its environmental/operational conditions, feature extraction and detection of structural modification.
The rest of paper describes the applications of continuous dynamic monitoring System to different structures such as a wind turbine System and a highway bridge.

In the context of national innovative project IMO-WIND, an integrated long term monitoring System was installed on a prototype of an offshore wind turbine System of 5 megawatt dass. The Federal Institute for Materials Research and Testing (BAM) was responsible for development of the SHM System. It consists of a signal acquisition System and a Signal processing and management System.
The signal acquisition System is composed of 14 acceleration sensors, 110 strain gauges and 4 inclination sensors, installed at the tripod foundation and the tower. It began to work in August 2007. In order to investigate the structural dynamic properties, extract efficient damage index and manage huge amounts of Vibration Signals and analysis results, an automated signal processing and management Software System is developed in LabVIEW® environment. It includes functions such as automated Operational Modal Analysis (OMA) on the basis of Stochastic Subspace Identification (SSI) method and poly-reference Least-Squares Complex Frequency Domain (p-LSCF) approach, investigation of environmental/operational effects on structural dynamic properties under operational conditions, features extraction using Principal Component Regression (PCR) and Multiple Linear Regression (MLR) as well as data/result management and visualization.
Besides, this paper also presents variations of structural modal parameters of a wind turbine system under complex environmental/operational conditions. Comparison of modal parameters automatically extracted by SSI method and poly-reference p-LSCF approach indicates that the latter method provides more stable modal identification results ffom the viewpoint of long term OMA. Subsequently, the influences of temperature, wind velocity, rotation speed and nacelle direction on modal parameters are generally discussed. Finally, variations of indentified modal parameters during two years are presented.

The implementation of a continuous dynamic monitoring System in Pedro e Ines footbridge at Coimbra, Portugal, operating since June 2007, enabled to detect different environmental/operational effects on the modal properties, based on appropriate processing of monitoring data collected by a set of accelerometers and thermal sensors.
In order to remove or mitigate such environmental/operational effects with the purpose of damage detection, two different Statistical methods have been adopted, One of them consists in the multiple linear regression (MLR) by performing correlation analysis between measured modal properties and environmental/operational variables. Another is based on the identification of the linear subspace within the modal properties by applying principal component regression (PCR) without using measured values of environmental and operational variables.
This paper presents a comparison ofthe performance of these two alternative approaches on the basis of continuous monitoring data acquired front the instrumented Pedro e Ines footbridge.

The implementation of continuous dynamic monitoring systems in two bridges, in Portugal, is enabled to detect the occurrence of very significant environmental and operational effects on the modal properties of these bridges, based on automated processing of massive amounts of monitoring data collected by a set of accelerometers and thermal sensors over several years.
In order to remove or mitigate such environmental/operational effects with the purpose of damage detection, two different statistical methods have been adopted. One of them is the multiple linear regression by performing nonlinear correlation analysis between measured modal properties and environmental/operational variables. Another one is principal component regression based on the identification of the linear subspace within the modal properties without using measured values of environmental and operational variables.
This paper presents a comparison of the performance of these two alternative approaches on the basis of continuous monitoring data acquired from two instrumented bridges and simulated damage scenarios. It is observed that different methods show similar capacity in removing environmental effects, and the multiple linear regression method is slightly more sensitive to structural damage.

The Westend Bridge is located on the A100 Highway in Berlin. An integrated continuous dynamic monitoring system, composed of 20 velocity sensors, 5 temperature sensors, 3 strain gauges, 1 crack sensor and 2 inclination sensors, was implemented by the Federal Institute for Materials Research and Testing in 2000. The system runs continuously with occasional intermittence and led to a huge amount of data over a 14-year span. In this article, variations of the strain, crack and inclination measurements during the last 14 years are presented. It is noted that the observed crack and inclination of the bridge are strongly influenced by seasonal temperature variation. It further induces change in the relationship between the strains measured in both concrete and prestressed tendon. Application of k-means cluster Analysis technique in both the crack and strain measurements can partition them into different seasonal phases by identifying ‘turning points’ that indicate annual periodical bridge change. In the period of these two ‘turning points’, a strong linear relation of the strains in two materials is observed. In the rest of the year, a nonlinear relationship between the strains recorded in both the concrete and the prestressed tendon is noted. The possible reason is the additional thermal load due to the change in temperature difference between the bridge’s surface and soffit. Finally, a health index in a Framework of regression model and process control theory is proposed by investigating the linear relationship between the strains in concrete and prestressed tendon. The tendency of the health index in the 14 years may suggest the long-term bridge change during that time frame.

This paper addresses operational modal analysis (OMA) and continuous dynamic monitoring (CDM) of two bridges. One of them is installed with Tuned Mass Dampers (TMDs) while another one is a normal bridge. Two ambient vibration tests were performed on these two bridges respectively. It is observed that not only installation of TMDs but also environmental factors influence the variations of structural frequencies, which may mask the subtle change induced by small structural changes. As a result, continuous dynamic monitoring systems were implemented on these two bridges, in order to evaluate efficiency of the TMD system, remove the environmental effects and build reliable damage indices that are only sensitive to structural changes. The results of CDM of these two bridges during several years are presented. Software systems developed for OMA and CDM are also introduced.

Altematively to common modal analysis as tool for detectmg changes between a reference and an actual (possibly damaged) structural state, the subspace-based damage detection method has been developed in recent years and successfully adopted to test application data sets. Characteristic for that method is that instead of analyzing modal parameters, a Statistical test with respect to changes of a dynamic signature of structural response is introduced. Therefor, a Gaussian residual vector is extracted from the subspace of an output only Vibration data covariance matrix within the reference state. The paper describes the application of this damage detection method within a laboratory fatigue test on a Steel frame structure. Aim of the investigation was to analyze the usability and efficiency of the detection method for realistic damage on carrying structures of wind energy turbines. In a second Step, a numerical model of the lab test structure is developed and validated. Thus, a comparable numerical Simulation of the fatigue damage detection was feasible and the accuracy of the Simulation procedure could be verified. The present study describes the first Step in a two-step approach for quantifying and optimizing fundamental characteristics of SHM Systems for offshore wind turbine structures concerning a required number of sensors and their optimal location.

Subspace-based detection of fatigue damage on jacket support structures of offshore wind turbines
(2014)

The paper describes the application of the Stochastic Subspace-based Damage Detection (SSDD) method on model structures for an utilization of this approach on offshore wind turbine structures. Aim of the study was therefore to analyze the usability and efficiency of the detection method as well as to determine an optimized set of parameter for realistic damage on support structures of wind energy turbines. Based on results of an experimental fatigue test on a Steel frame laboratory structure a strategy for a numerical verification of the experimentally evolved damage detection was developed, utilizing a time integration approach to simulate the dynamic response. In a second Step the identified modeling and computing methodology is used to numerically investigate the ability to detect damage in real size structural components of offshore wind turbines.

Following the long tradition of the Federal Institute for Materials Research and Testing (BAM) since Adolf Martens has created first routines in failure analysis (Ruske, 1971), BAM has been frequently called-in by the Berlin Traffic Association (BVG) to carry out root-cause analyses of the Berlin suburban train line (Frahm, 1902), reported in Helmerich and Herter (1999), Helmerich (2000), Nega and Winkler (1998), Helmerich et al. (2002) and Herter et al. (2002). This was also the case in the 1990s, when BVG-inspectors found cracks in hanging, barrel-like shaped ballast plates of the Berlin underground steel viaducts during regularly scheduled inspections. Cracks were located parallel to the riveted connection between the ballast plates and the upper chord of the viaduct cross girder steel profiles. For safety reasons, the operator BVG immediately stopped the cracks by means of drilling stop holes at the crack tips. As intermediate measures, longitudinal steel profiles were spanned below the rail axes between the cross girders affected to stabilize the track in longitudinal direction. The inspection period was shortened from years to few weeks. BAM was mandated to measure strains under regular train traffic to analyze the cause of the cracks. Strains were measured in identical connections as the damaged details, which did not suffer from cracks at the time of the measurement. The traffic-induced strain cycles and thus the resulting strain differences in the questionable cross sections were higher than expected and resulted in stresses of max. 85.8 MPa. Calculations showed that the credible remaining fatigue life for this particular structural detail was exceeded after 68 years according to nowadays standards. Extensive discussions, further field and laboratory tests followed to develop a rehabilitation plan for retrofitting the structure with minimum interference of the traffic. Finally, a method with minimum intervention to the structure was elaborated by a consortium of the operator BVG, BAM and producers based on further laboratory and field tests at BAM. Now, the viaduct is saved for the future.

The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique.
The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique.