## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Buchkapitel (11) (entfernen)

#### Schlagworte

- Damage detection (2)
- Offshore wind turbines (2)
- Pfahlgründungen (2)
- Subspace methods (2)
- Ambient vibration (1)
- Axial force (1)
- Axial pile capacity (1)
- Changing excitation (1)
- Cyclic loads (1)
- Dynamic test (1)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (11) (entfernen)

The stability and geometric nonlinearities of slender structures are a major topic in structural design. While this topic is most relevant in the field of Structural Engineering, e.g. for steel or concrete structures, only few applications take the role of soil-structure-interaction explicitly into account. The focus of this paper is placed on the impact of soil support and its modelling for the buckling analysis based on examples both for pile foundations and for railway track stability. The general interaction between steel design and the geotechnical input will be addressed. The paper discusses and summarizes a range of subtopics based on experience and current research at the author’s institute.

Methods have been presented for detailed studies of railway vibration and for the fast prediction of train-induced ground vibration. The ground vibration is generated by static or dynamic loads. The main purpose of this contribution was to show the influence of inhomogeneous soils on the different vibration components.
Layered soils, namely a soft layer on a stiffer half-space, yield a quite specific transmission behavior. The low-frequency and sometimes also high-frequency cut-off of the transfer function of the soil is demonstrated in theory and by experiments at many sites of which the soil model is approximated from dispersion and transfer function measurements. The layer frequency divides the frequency range in a low-frequency range, where the stiff half-space rules the low amplitudes, and a high amplitude high-frequency range which is mainly determined by the softer top layer. A thick soft layer yields a very low layer frequency, so that the higher soft soil amplitudes have a wider range down to low frequencies. A thin layer yields a high layer frequency, so that the high frequencies above this layer frequency are dominant. The higher the contrast between the stiff half-space and the soft layer is, the stronger the increase between the half-space and layer amplitudes, the more characteristic are the spectra of the soil transfer function. The range of measured soils has been from vS1 down to 125 m/s, vS2 up to 1000 m/s and the layer frequencies are within 10 Hz < f0 < 75 Hz. Moreover, during this measuring campaign in Switzerland, all 11 sites showed clearly the layer-on-half-space behaviour. The transfer functions of inhomogeneous soils have been used to predict the ground vibration due to dynamic axle loads which is usually thought to be the most important component.
The passage of static loads, in the contrary, results in very small vibration amplitudes for low train speeds, which can only be found at near distances and at low frequencies. They attenuate very rapidly with distance and lose very rapidly the higher frequency content. The passage of static axle loads can be included in the prediction of railway vibration just for completeness.
Special attention should be given to the case if the train runs with the Rayleigh-wave speed of the soil (Rayleigh train). The Rayleigh-train effect is strongest for a homogeneous half-space: At the near-field of the track the amplitudes are raised strongly compared to normal trains, and in addition, little attenuation with distance is observed. In case of a layered soil, the low-frequency cut-off reduces the frequency range and the amplitudes of the homogeneous quasi-static ground vibrations. Therefore, the Rayleigh-train effects are clearly reduced by a layered soil and they disappear if the layer frequency (for example for a thin layer) is higher than the frequency band of the axle impulse. The Rayleigh-train effect could completely disappear in a randomly inhomogeneous soil, but this has not been analysed so far.
The axle impulses from static loads can have an additional, quite different effect. They can be scattered by a randomly inhomogeneous soil so that a part (the scattered part) of the axle impulse can reach further distances from the track. This can establish a certain mid-frequency component of the ground vibration which becomes dominant in the far-field, and this important component exists for all train speeds. Experimental results from BAM and international measurements show the importance of the corresponding frequency range.
The mitigation of train induced ground vibration by elastic and stiff track elements has been analysed threefold. The vehicle-track interaction yields the reduction at high frequencies above the vehicle-track resonance. This is the standard effect. The filtering of trackbed errors by the bending stiffness of the track yields a certain mid-frequency effect. An even stronger mid-frequency effect is predicted for the mitigation of the scattered axle impulses by the bending stiffness and elastic elements of the track.

Automatic vibration-based structural health monitoring has been recognized as a useful alternative or addition to visual inspections or local non-destructive testing performed manually. It is, in particular, suitable for mechanical and aeronautical structures as well as on civil structures, including cultural heritage sites. The main challenge is to provide a robust damage diagnosis from the recorded vibration measurements, for which statistical signal processing methods are required. In this chapter, a damage detection method is presented that compares vibration measurements from the current system to a reference state in a hypothesis test, where data9
related uncertainties are taken into account. The computation of the test statistic on new measurements is straightforward and does not require a separate modal identification. The performance of the method is firstly shown on a steel frame structure in a laboratory experiment. Secondly, the application on real measurements on S101 Bridge is shown during a progressive damage test, where damage was successfully detected for different damage scenarios.

This paper describes the experimental calibration of an existing Wiegmann–Polonceau roof truss based on modal parameters. Dynamic tests allowed the determination of the natural frequencies and mode shapes of the global truss and of individual truss members. The global and local modal configurations as well as coupled vibration of truss members are discussed. In addition, as truss members are axially loaded, the effect of stress stiffening on the modal parameters is considered. Moreover, several finite element models with different modelling assumptions for the details of the connections and member geometrical characteristics such as gusset plates and turnbuckles were developed. A suitable numerical model was chosen to represent the truss structural behavior. This paper focuses on the local measurement and analysis strategies applied to single truss members. The possibility of using a local analysis method, namely methods that consider individual members as part of a structure, is demonstrated to assess the behavior of the global truss structure. The comparison of the results after calibration reveals a very good correlation between the experimentally identified and numerically estimated modal parameters of the historic truss.

Schieflagen bitte vermeiden
(2016)

Vieles ist möglich, auch auf dem Meeresboden. Wind und Wellen rütteln gemeinsam an der Gründung, den Fundamenten der Offshore-Windenergieanlagen. Hinzu kommen die „ganz normale“ Strömung sowie die in der Nordsee besonders ausgeprägten Gezeiten von Ebbe und Flut. Zudem kann am Meeresboden Porenwasserüberdruck entstehen, der den Boden lockern und im schlimmsten Fall bei Monopiles die Stabilität der gesamten Anlage ändern kann. Selbst wenn ein solcher in den Meeresboden gerammter Pfahl bis zu 8 Meter Durchmesser hat. Über die Hälfte der geplanten Offshore-Anlagen in Nord- und Ostsee werden mit Ein-Pfahl-Gründungen geplant, über 40 % sollen als Mehrpfahl-Gründungen, zum Beispiel als Tripod, ausgeführt werden. Von daher verdienen Pfahlgründungen und ihre Belastungen besondere Aufmerksamkeit. Denn eines gilt es im Anlagenbetrieb unbedingt zu vermeiden: Eine drohende Schiefstellung der Anlage

Offshore wind turbines enter unknown territory, especially where the foundations are concerned. This is because offshore wind power can only make use of the experience from the common offshore constructions used by the oil and gas industry to a limited extent. The offshore wind industry has tried to reduce foundation dimensions, especially the pile lengths, as much as possible compared with those of the oil and gas industry. This is because with the large number of wind turbines involved it can provide considerable economic advantages. On the other hand, the stability of the foundations is additionally at risk because due to the much larger number of cyclic loads they are subjected to it is very difficult to predict how they will behave. Since offshore wind farms are manufactured in series, every systematic fault in the foundation acts as a series fault for a large number of turbines. This calls for monitoring – and the right dimensions of pile foundation, the most common type of foundations used for wind turbines

A great deal is possible, even on the seabed. Together, wind and waves shake the foundations of the offshore wind turbines. "ere is also the “normal” current and ebb and #ow of the tides that are so distinctive in the North Sea. Pore water pressure can also occur on the seabed, loosening it. Where monopiles are involved, the worst case is that the stability of the whole turbine can be altered – even if such a monopile rammed into the seabed has a diameter of up to eight metres. Over half the planned offshore wind turbines in the North and Baltic Seas are to have monopile foundations, and over 40 % are to have multi-pile foundations, designed for example as a tripod. "is is why pile foundations and their loads deserve special attention. For one thing above all is to be avoided in plant operations, and that is the risk of turbine tilt.

Offshore-Windenergie betritt Neuland, gerade bei der Gründung. Denn Windenergie auf See kann die Erfahrungen der gängigen Offshore-Konstruktionen der Öl- und Gasindustrie nur bedingt nutzen. Mehr als dort, versucht man bei der Offshore-Windenergie, die Gründungsabmessungen – insbesondere die Pfahllängen – soweit wie möglich zu reduzieren. Denn dies kann bei der hohen Anzahl der Windenergieanlagen erhebliche wirtschaftliche Vorteile bringen. Andererseits wird die Standsicherheit der Gründungen durch den viel höheren Anteil an zyklischen Lasten gegenüber den gängigen Offshore- Strukturen in schwer einschätzbarer Weise zusätzlich gefährdet. Da Offshore-Windenergieanlagen in Serienfertigung produziert werden, wirkt sich hier jeder systematische Fehler bei der Gründung dann gleich als Serienfehler auf eine Vielzahl von Anlagen aus. Überwachung ist also angesagt – und das richtige Maß bei der Pfahlgründung, der am meisten verwendete Fundamenttyp bei Windenergieanlagen.

Damage detection can be performed by detecting changes in the modal parameters between a reference state and the current (possibly damaged) state of a structure from measured output-only vibration data. Alternatively, a subspace-based damage detection test has been proposed and applied successfully, where changes in the modal parameters are detected, but the estimation of the modal parameters themselves is avoided. Like this, the test can run in an automated way directly on the vibration measurements. However, it was assumed that the unmeasured ambient excitation properties during measurements of the structure in the reference and possibly damaged condition stay constant, which is hardly satisfied by any application. A new version of the test has been derived recently that is robust to such changes in the ambient excitation. In this paper, the robust test is recalled and its performance is evaluated both on numerical simulations and a real application, where a steel frame structure is artificially damaged in the lab.