## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

#### Schlagworte

- Overhead transmission lines (4) (entfernen)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (4) (entfernen)

Aerodynamic damping is a decisive parameter influencing the dynamic response of overhead transmission line conductors. Methods of how to account for the effects of aerodynamic damping differ significantly and so might do the results. In this work, the source of aerodynamic damping being the result of the relative velocity between the structure and wind flow will be revised. Based on wind tunnel tests and validated by simulations, the differences of linear movement compared to a pendulum movement of a sagging cable are shown. The reasons for that Deviation are the large deflections, resulting in a movement non-parallel to the acting wind flow. For analysis in frequency domain, it is not possible to incorporate aerodynamic damping implicitly by fluid structure interaction. If the dynamic movement can be linearized at a working point of the mean deflection, a modification to the linear approach is suggested. This approach is validated by simulation with a finite element model of an existing overhead transmission line, calibrated with full scale measurements. Aerodynamic damping is incorporated in time step analysis by Rayleigh damping and modal damping. The differences between both approaches are emphasized and modal damping is shown to be the most adequate.

Aerodynamic damping of nonlinear movement of conductor cables in laminar and turbulent wind flow
(2015)

It is widely accepted that aerodynamic damping is a decisive parameter influencing the dynamic response of overhead transmission line conductors in turbulent wind flow. But anyway, methods of how to account for the effects of aerodynamic damping differ significantly and so might do the results. In this work, the source of aerodynamic damping shall be revised leading to the well-known formulation for a linear pendulum being the result of the relative velocity between the structure and wind flow. Based on wind tunnel tests and validated by simulations, the differences to a pendulum movement of a sagging cable are shown. The reasons for that deviation are the large deflections, resulting in a movement non parallel to the acting wind flow. For some analysis, in particular those in frequency domain, it is practically not possible to incorporate aerodynamic damping implicitly by fluid structure interaction. If the dynamic movement can be linearized at a working point of the mean deflection, a modification to the linear approach is suggested. This approach is validated by simulation with a finite element model of an existing overhead transmission line, calibrated with onsite measurements for wind velocities at lower levels. Further accent is put on the different possibilities to incorporate aerodynamic damping in time step analysis, such as Rayleigh damping or modal damping. The differences between both approaches are emphasized and modal damping is shown to be the most adequate representation of aerodynamic damping.

Overhead transmission lines are very sensitive structures in regards to wind action. The cables, spanning over a few hundred meters contribute in particular to the overall action on the suspension towers. These slender structures incorporate both structural nonlinearities from the large deformation of the cables and aerodynamic nonlinearities which need to be accounted for when it is to estimate the system response to strong wind events. In this work, a finite element procedure is presented to model an existing power line section using nonlinear cable elements. The wind force is assumed quasi-steady with force coefficients determined in wind tunnel test on a conductor section. Further, aerodynamic damping is incorporated by considering the relative velocity between cable nodes and oncoming wind flow. The results are compared with on-site measurements of the cables support reaction. The results show a significant effect of damping since almost no resonant amplification is visible both in observation and simulation. In addition, wind tunnel tests approved aerodynamic damping to be large for the system of sagging cables, but nonlinear in its nature. It is concluded, that the dynamic response of overhead transmission line cables has to be modeled with care, considering all sources of nonlinearities. That is of particular interest in case of random excitation such as wind because the peak response depends on the probability distribution of the system's response.

The paper focuses on a recently launched project of wind measurements along a high voltage overhead transmission line. For reliable information on the actual horizontal distribution of the wind flow, 13 positions along two spans of an overhead electrical line of about 400 m length each are selected for wind measurements. Simultaneously, the structural response is measured at the towers. Preliminary analyses aim at the system identification of long span transmission lines exposed to gusty wind by derivation of a so called joint acceptance function which describes the admittance from wind velocity to the system's response. It can be shown that measured structural response can accurately be described using a statistical model which accounts for the irregularity of the wind as well as the structures behaviour.