## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (1)
- Buchkapitel (1)

#### Schlagworte

- Prediction (2) (entfernen)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (2) (entfernen)

Methods have been presented for detailed studies of railway vibration and for the fast prediction of train-induced ground vibration. The ground vibration is generated by static or dynamic loads. The main purpose of this contribution was to show the influence of inhomogeneous soils on the different vibration components.
Layered soils, namely a soft layer on a stiffer half-space, yield a quite specific transmission behavior. The low-frequency and sometimes also high-frequency cut-off of the transfer function of the soil is demonstrated in theory and by experiments at many sites of which the soil model is approximated from dispersion and transfer function measurements. The layer frequency divides the frequency range in a low-frequency range, where the stiff half-space rules the low amplitudes, and a high amplitude high-frequency range which is mainly determined by the softer top layer. A thick soft layer yields a very low layer frequency, so that the higher soft soil amplitudes have a wider range down to low frequencies. A thin layer yields a high layer frequency, so that the high frequencies above this layer frequency are dominant. The higher the contrast between the stiff half-space and the soft layer is, the stronger the increase between the half-space and layer amplitudes, the more characteristic are the spectra of the soil transfer function. The range of measured soils has been from vS1 down to 125 m/s, vS2 up to 1000 m/s and the layer frequencies are within 10 Hz < f0 < 75 Hz. Moreover, during this measuring campaign in Switzerland, all 11 sites showed clearly the layer-on-half-space behaviour. The transfer functions of inhomogeneous soils have been used to predict the ground vibration due to dynamic axle loads which is usually thought to be the most important component.
The passage of static loads, in the contrary, results in very small vibration amplitudes for low train speeds, which can only be found at near distances and at low frequencies. They attenuate very rapidly with distance and lose very rapidly the higher frequency content. The passage of static axle loads can be included in the prediction of railway vibration just for completeness.
Special attention should be given to the case if the train runs with the Rayleigh-wave speed of the soil (Rayleigh train). The Rayleigh-train effect is strongest for a homogeneous half-space: At the near-field of the track the amplitudes are raised strongly compared to normal trains, and in addition, little attenuation with distance is observed. In case of a layered soil, the low-frequency cut-off reduces the frequency range and the amplitudes of the homogeneous quasi-static ground vibrations. Therefore, the Rayleigh-train effects are clearly reduced by a layered soil and they disappear if the layer frequency (for example for a thin layer) is higher than the frequency band of the axle impulse. The Rayleigh-train effect could completely disappear in a randomly inhomogeneous soil, but this has not been analysed so far.
The axle impulses from static loads can have an additional, quite different effect. They can be scattered by a randomly inhomogeneous soil so that a part (the scattered part) of the axle impulse can reach further distances from the track. This can establish a certain mid-frequency component of the ground vibration which becomes dominant in the far-field, and this important component exists for all train speeds. Experimental results from BAM and international measurements show the importance of the corresponding frequency range.
The mitigation of train induced ground vibration by elastic and stiff track elements has been analysed threefold. The vehicle-track interaction yields the reduction at high frequencies above the vehicle-track resonance. This is the standard effect. The filtering of trackbed errors by the bending stiffness of the track yields a certain mid-frequency effect. An even stronger mid-frequency effect is predicted for the mitigation of the scattered axle impulses by the bending stiffness and elastic elements of the track.

Train passages induce forces on the track, train-induced vibrations propagate through the soil and excite neighbouring buildings. The emission, which is the first part of the prediction of vibrations near railway lines, is presented by focusing on the dynamic axle loads. The calculation of the axle loads is based on the vehicle-track-soil interaction. This interaction calculus utilises the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil system. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the ballast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. All necessary transfer functions for the prediction of axle-load spectra are presented as general formula and as specific graphs for differing vehicle and track parameters. The prediction method is applied to a ballast track and a slab track and compared with corresponding axle-box measurements. Moreover, ground vibration measurements at numerous sites are exploited for the axle-load spectra and the validation of the prediction method. All theoretical and experimental results confirm that the dynamic axle-load spectra have an approximate value of 1 kN per third of octave and increase with train speed, track stiffness and around the vehicle-track resonance.