## 7.2 Ingenieurbau

### Filtern

#### Erscheinungsjahr

- 2017 (75) (entfernen)

#### Dokumenttyp

- Vortrag (31)
- Zeitschriftenartikel (19)
- Beitrag zu einem Tagungsband (18)
- Buchkapitel (3)
- Posterpräsentation (3)
- Dissertation (1)

#### Schlagworte

- Finite element method (7)
- Ground vibration (7)
- Axial force (5)
- Dynamic test (5)
- Truss structures (5)
- Inspection (4)
- Modal parameters (4)
- Model updating (4)
- Monitoring (4)
- Optimization technique (4)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (75) (entfernen)

The Westend Bridge is located on the A100 Highway in Berlin. An integrated continuous dynamic monitoring system, composed of 20 velocity sensors, 5 temperature sensors, 3 strain gauges, 1 crack sensor and 2 inclination sensors, was implemented by the Federal Institute for Materials Research and Testing in 2000. The system runs continuously with occasional intermittence and led to a huge amount of data over a 14-year span. In this article, variations of the strain, crack and inclination measurements during the last 14 years are presented. It is noted that the observed crack and inclination of the bridge are strongly influenced by seasonal temperature variation. It further induces change in the relationship between the strains measured in both concrete and prestressed tendon. Application of k-means cluster Analysis technique in both the crack and strain measurements can partition them into different seasonal phases by identifying ‘turning points’ that indicate annual periodical bridge change. In the period of these two ‘turning points’, a strong linear relation of the strains in two materials is observed. In the rest of the year, a nonlinear relationship between the strains recorded in both the concrete and the prestressed tendon is noted. The possible reason is the additional thermal load due to the change in temperature difference between the bridge’s surface and soffit. Finally, a health index in a Framework of regression model and process control theory is proposed by investigating the linear relationship between the strains in concrete and prestressed tendon. The tendency of the health index in the 14 years may suggest the long-term bridge change during that time frame.

This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented. The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural integrity and facilitating to describe the structural system performance and its functionality throughout the service life. The structural system performance is described with its functionality, its deterioration and its behavior under extreme loading. The structural system reliability given the damage detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated as the difference between the expected benefits and risks utilizing the damage detection information or not. With an application example of the developed approach based on a deteriorating Pratt truss system, the value of damage detection information is determined,demonstrating the potential of risk reduction and expected cost reduction.

- Impact tests of concrete blocks
- High energy facility for laminographic testing
- Laminographic arrangement
- Cross-Laminography
- Measurement range extension by detector tiling
- Reconstruction methods
- Fast “shift averaging” method “next to base plane”
- reconstruction --> Removal of reinforcement indications
- 3D-Data analysis
- Crack-Segmentation by „Template Matching“

In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity.
The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously.

The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness interface element of Beer is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The Mohr-Coulomb and Clough and Duncan models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of elasto-plasticity such as: Lashkari and Mortara were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as: relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end.

The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness Interface element of Beer is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The Mohr-Coulomb and Clough and Duncan models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of
elasto-plasticity such as: Lashkari and Mortara were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as:
relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end.

This paper deals with uncertainty considerations in damage diagnosis using the stochastic subspace-based damage detection technique. With this method, a model is estimated from data in a (healthy) reference state and confronted to measurement data from the possibly damaged state in a hypothesis test. Previously, only the uncertainty related to the measurement data was considered in this test, whereas the uncertainty in the estimation of the reference model has not been considered. We derive a new test framework, which takes into account both the uncertainties in the estimation of the reference model as well as the uncertainties related to the measurement data. Perturbation theory is applied to obtain the relevant covariances. In a numerical study the effect of the new computation is shown, when the reference model is estimated with different accuracies, and the performance of the hypothesis tests is evaluated for small damages. Using the derived covariance scheme increases the probability of detection when the reference model estimate is subject to high uncertainty, leading to a more reliable test.

This paper describes the experimental calibration of an existing Wiegmann–Polonceau roof truss based on modal parameters. Dynamic tests allowed the determination of the natural frequencies and mode shapes of the global truss and of individual truss members. The global and local modal configurations as well as coupled vibration of truss members are discussed. In addition, as truss members are axially loaded, the effect of stress stiffening on the modal parameters is considered. Moreover, several finite element models with different modelling assumptions for the details of the connections and member geometrical characteristics such as gusset plates and turnbuckles were developed. A suitable numerical model was chosen to represent the truss structural behavior. This paper focuses on the local measurement and analysis strategies applied to single truss members. The possibility of using a local analysis method, namely methods that consider individual members as part of a structure, is demonstrated to assess the behavior of the global truss structure. The comparison of the results after calibration reveals a very good correlation between the experimentally identified and numerically estimated modal parameters of the historic truss.

Measurements of downburst wind loading acting on an overhead transmission line in northern Germany
(2017)

Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model.

The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage.

Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil.

Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration
(2017)

Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations.

This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation.

The Federal Institute of Material Research and Testing (BAM) has collected some experience with the testing of damaged, repaired and newly constructed railway tracks. The experimental methods are hammer testing of the track at different positions, hammer testing of the soil, measurement of train passages, and in all cases, measurements with geophones at different positions. The measured signals are evaluated for wave velocities (dispersion of the soil or the track-soil system), for transfer functions (transfer admittances of the soil, compliances of the track in amplitude and phase), and one-third octave band spectra of the track response to hammer and train excitation. These methods are applied at different stages of the track construction. Before track construction, wave velocities and transfer functions of the sub-soil can indicate problems with soft soils. After track construction, a check of the acceptable state of the track can be done by comparison of many excitation positions and track sites. After a track damage (a lose sleeper or a lose plate of a slab track) and after its repair, the sensitivity of the different measurement quantities to different track errors and the achieved improvement of the repair can be determined. The contribution shows examples of all these track situations

Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate.

Erosive phenomena at the mesoscale – Perspectives and challenges using coupled LBM-DEM models
(2017)

The physical phenomena related to the erosion of granular materials by a fluid flow are ubiquitous and often present major challenges and threats to a wide range of civil engineering constructions and infrastructures. Catastrophic earth-dam failures and large sinkholes are just some of the possible outcomes of the different forms of erosion (a.o. surface erosion, suffusion, piping, backwards erosion, etc…). However, little is known about the actual mechanical origins of erosion, while the assessment of erodibility is generally performed by means of experimental tests and empirical correlations.
Here we provide a general overview of some current research models aiming to clarify the micromechanical phenomena and their macromechanical consequences taking place in different erosion scenarios. The employed numerical techniques rely on the coupling of two well-stablished particle methods for the fluid and solid phases, namely the Lattice Boltzmann Method (LBM) and the Discrete Element Method (DEM) respectively. Further ingredients of our numerical models include an elastoplastic cohesion model for intergranular solid bridges and a subcritical debonding model for the simulation of transient damage processes within the soil matrix.

Compaction grouting involves the injection under high pressure of a highly viscous grout into the soil to displace and compact the surrounding soil without fracturing it. This ground improvement technique has been used widely for settlement control, increasing liquefaction resistance or bearing capacity of soil under new or existing structures. The work presented here aims to show some numerical and experimental investigations being carried out to understand the compaction mechanism and the soil-grout interaction, which is crucial for a successful usage of this technique.
To investigate compaction grouting in the laboratory under various stress conditions, a large-scale testing chamber has been developed. The grout was injected directly at the transparent vertical window of the chamber in order to investigate the possibility to monitor the injection process with a camera to measure the in-plane soil displacements and strains by means of the PIV technique. The other aim of this study is to develop a numerical model, which should be able to deal with large displacements and deformations and to simulate the change in shape of the distinct soil-grout interface solely as a result of the interaction between the injected grout and the surrounding soil. Based on these considerations, as a numerical technique, we employ the implicit Material Point Method based on a mixed formulation, which is implemented in the open source Kratos Multiphysics framework. In contrast to standard FE formulations, the usage of the MPM avoids both the numerical instability caused by extensive mesh distortion and the high computational costs of remeshing. The main results focus on the different evolution of the grout bulb inside the soil under various stress states.