## 7.2 Ingenieurbau

### Filtern

#### Erscheinungsjahr

- 2013 (24) (entfernen)

#### Dokumenttyp

- Beitrag zu einem Tagungsband (19)
- Zeitschriftenartikel (2)
- Buchkapitel (2)
- Vortrag (1)

#### Sprache

- Englisch (24) (entfernen)

#### Schlagworte

- Damage detection (2)
- Finite-element boundary-element method (2)
- 1-D insertion loss (1)
- Assessment (1)
- Automated operational modal analysis (1)
- CPT (1)
- Concrete (1)
- Cyclic axial loading (1)
- Cyclic loading (1)
- Cyclic loads (1)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (24) (entfernen)

In the context of national innovative project IMO-WIND, an integrated long term monitoring System was installed on a prototype of an offshore wind turbine System of 5 megawatt dass. The Federal Institute for Materials Research and Testing (BAM) was responsible for development of the SHM System. It consists of a signal acquisition System and a Signal processing and management System.
The signal acquisition System is composed of 14 acceleration sensors, 110 strain gauges and 4 inclination sensors, installed at the tripod foundation and the tower. It began to work in August 2007. In order to investigate the structural dynamic properties, extract efficient damage index and manage huge amounts of Vibration Signals and analysis results, an automated signal processing and management Software System is developed in LabVIEW® environment. It includes functions such as automated Operational Modal Analysis (OMA) on the basis of Stochastic Subspace Identification (SSI) method and poly-reference Least-Squares Complex Frequency Domain (p-LSCF) approach, investigation of environmental/operational effects on structural dynamic properties under operational conditions, features extraction using Principal Component Regression (PCR) and Multiple Linear Regression (MLR) as well as data/result management and visualization.
Besides, this paper also presents variations of structural modal parameters of a wind turbine system under complex environmental/operational conditions. Comparison of modal parameters automatically extracted by SSI method and poly-reference p-LSCF approach indicates that the latter method provides more stable modal identification results ffom the viewpoint of long term OMA. Subsequently, the influences of temperature, wind velocity, rotation speed and nacelle direction on modal parameters are generally discussed. Finally, variations of indentified modal parameters during two years are presented.

The implementation of a continuous dynamic monitoring System in Pedro e Ines footbridge at Coimbra, Portugal, operating since June 2007, enabled to detect different environmental/operational effects on the modal properties, based on appropriate processing of monitoring data collected by a set of accelerometers and thermal sensors.
In order to remove or mitigate such environmental/operational effects with the purpose of damage detection, two different Statistical methods have been adopted, One of them consists in the multiple linear regression (MLR) by performing correlation analysis between measured modal properties and environmental/operational variables. Another is based on the identification of the linear subspace within the modal properties by applying principal component regression (PCR) without using measured values of environmental and operational variables.
This paper presents a comparison ofthe performance of these two alternative approaches on the basis of continuous monitoring data acquired front the instrumented Pedro e Ines footbridge.

Operational modal analysis and vibration based damage detection of engineering
structures have become important issues for Structural Health Monitoring (SHM) and
maintenance operations, e.g. on transport infrastructure. Methods from control
engineering have been adopted and converted for the application on civil structures.
Approaches like subspace-based system identification combine excellent theoretical
properties under the unknown excitation properties of a structure with practical
usefulness.
In this paper, the implementation of covariance-driven stochastic subspace
identification (SSI) on the smart wireless sensor platform PEGASE is described.
Special care is taken about the fast implementation of this technique since the
computations are embedded on the platform and perform in real-time. The most
efficient and current version of subspace algorithms has been implemented. Efficiency
and memory consumption are primary criteria in this implementation.
First validated results will be given for each step of the algorithms: crosscorrelation
on natural inputs signal from sensors; Hankel matrix output; SSI
implementation using the LAPACK library to get a SVD, pseudo-inverse, eigenvalues
etc. Results validation has been correlated between PEGASE implementation and the
previous processing in static situation: the same data was collected by wired sensors
and data-loggers, then, later, processed on a PC using traditional Matlab software.
In parallel, from an engineering point of view, a description of the PEGASE
wireless platform will be given: generic usage, wide capacities, embedded Digital
Signal Processing (DSP) processor and Library over a small embedded Linux
Operating System, a very accurate synchronization principle based on a GPS/PPS
principle, etc. Perspectives about a complete technical in-situ installation will also be
given.

A theorem on damage localization from flexibility changes has been proven recently,
where it has been shown that the image of the change in flexibility δF between
damaged and reference states of a structure is a basis for the influence lines of stress
resultants at the damaged locations. This damage localization approach can operate on
output-only vibration measurements from damaged and reference states, and a finite
element model of the structure in reference state is required. While the localization
approach is based on purely mechanical principles, an estimate of the image of δF is
required from the data that is subject to statistical uncertainty due to unknown noise
excitation and finite data length. In this paper, this uncertainty is quantified from the
measurements and a statistical framework is added for the decision about damaged
elements. The combined approach is successfully applied to a numerical simulation
and to a cantilever beam in a lab experiment.

Vehicle fires in tunnels can have catastrophic consequences for the road users, the property and traffic inffastructure. To support an evacuation planning, this study simulates the fire smoke toxicity and the smoke layer of a vehicle fire in a full-size test tunnel. The three dimensional prediction of the fire smoke toxicity in the test tunnel is realized by implementing the Fractional Effective Dose and the Fractional Summation concept in a CFD environment. The developed model facilitates to calculate fire scenarios for various types of tunnels and to quantify the hazard e.g. during an evacuation scenario.

Offshore piles have to withstand predominantly cyclic axial loads when they are installed in multi-pile configurations, as in jacket foundations. The dimensions of the pile are governed by both the internal capacity and the fatigue behaviour of the steel cross-section as well as by its external capacity in the pile-soil interaction. Owing to the large numbers of piled foundations required for current and future offshore wind farms, there is an urgent need to optimize the dimensions and related costs of single piles. With regard to the pile capacity, two major topics of research are the determination of possible capacity gains due to pile ageing effects and proper consideration of cyclic degradation. In order to investigate both effects, a large-scale testing facility has been constructed at the BAM TTS site in Horstwalde near Berlin. This open-air facility allows large tubular driven piles to be loaded cyclically in both tension and compression while studying the ageing effects by introducing delays between the testing campaigns. First results already show a moderate increase in pile capacity over time. Concerning the anticipated capacity degradation of cyclically loaded piles, preliminary results show an unexpected behaviour. Additional tests are currently being conducted for further clarification.

Prototypes of wind turbines of the megawatt dass are to be built and tested until 2008 within a German offshore wind energy test field in the North Sea (ALPHA VENTUS). To ensure a high operational reliability of offshore wind turbines with economically acceptable repair and maintenance efforts, comprehensive diagnosis and supervision concepts are required. Automatic monitoring Systems will be an essential part of such concepts. Because of the fact, that during Operation there will be static and dynamic interaction between the components ‘structure’, ‘machinery’ and ‘blades’ it is necessary to develop the monitoring techniques in an overall concept. These monitoring Systems are supposed to be applied for the design and testing as well as for the Operation and maintenance phases. In the paper the developed approaches for the measurement of actions and the condition monitoring of all components of an offshore wind energy plant will be shown.

Inspections are an efficient means of enhancing the reliability of redundant structural Systems subjected to fatigue. To investigate the effect of such inspections, we represent the deterioration state of a Daniels System by means of a probabilistic fatigue crack growth model of all elements, which considers stochastic dependence among element fatigue behavior. We include inspection results in the calculation of the System collapse probability through Bayesian updating of the System deterioration state. Based on this approach, we calculate the collapse probability of a deteriorating Daniels System conditional on different inspection strategies in terms of inspection coverage and inspection times. The acceptability of an inspection strategy is verified by comparing the calculated collapse probabilities with maximum acceptable System failure probabilities. This study is a Step towards identifying optimal inspection strategies for redundant structural Systems subjected to fatigue.

Relevant factors for the liquefaction susceptibility of cyclically loaded offshore monopiles in sand
(2013)

The offshore foundations may exhibit a relatively high liquefaction susceptibility due to the full saturation of the porous seabed and the cyclic nature of the typical offshore loads. Here, the particular relevance of some of the main factors that affect the liquefaction susceptibility of an offshore monopile will be addressed, focusing on the possibility of a progressive accumulation of residual pore water pressure within the saturated soil around a monopile under cyclic lateral loading. The discussion is based on numerical results obtained with a coupled FE model of the offshore foundation which includes the Biot-Zienkiewicz u-p model. A constitutive model of the Generalized Plasticity type has been used for the soil in order to reproduce important features of its behaviour under cyclic loading. This paper presents the findings derived from a parametric study of the problem and shows that the accumulation of residual pore pressure can produce significant changes of the pile's behaviour under external loading. The paper also investigates the effects caused by the loading from a realistic storm of moderate magnitude and the consequential transient degradation of the foundation's stiffness.

The paper focuses on a unique project of wind measurements along a high voltage Overhead transmission line. For reliable information on the horizontal distribution of the wind flow, 13 positions along two spans of an overhead electrical line of about 400 m length each are selected for wind velocity measurements. Simultaneously, the structural response is measured at the towers. Preliminary analyses aim at the appraisal of results what is important for the upcoming system identification. It is shown that system identification of long span transmission lines exposed to gusty wind is possible by derivation of a so called joint acceptance function which describes the admittance from wind velocity to the systems response.

Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load Tests and pile integrity tests.

The paper focuses on a recently launched project of wind measurements along a high voltage overhead transmission line. For reliable information on the actual horizontal distribution of the wind flow, 13 positions along two spans of an overhead electrical line of about 400 m length each are selected for wind measurements. Simultaneously, the structural response is measured at the towers. Preliminary analyses aim at the system identification of long span transmission lines exposed to gusty wind by derivation of a so called joint acceptance function which describes the admittance from wind velocity to the system's response. It can be shown that measured structural response can accurately be described using a statistical model which accounts for the irregularity of the wind as well as the structures behaviour.