## 7.2 Ingenieurbau

### Filtern

#### Erscheinungsjahr

- 2018 (4) (entfernen)

#### Referierte Publikation

- nein (4) (entfernen)

#### Schlagworte

- Design (1)
- Design methods (1)
- Design practice (1)
- Geomechanics (1)
- Geomechanics of offshore foundations (1)
- Load bearing behaviour (1)
- Offshore pile foundations (1)
- Offshore wind energy (1)
- Offshore wind farms (1)
- Physical phenomenology (1)
- Pile foundations (1)
- Wave-Tower interaction (1)
- Windfarm wake analysis (1)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (4) (entfernen)

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.

This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided in two lectures.
The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here.
The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended.
Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of these two topics is illustrated with experimental results from a field testing campaign on real large-scale piles.

Design challenges for offshore wind-farms. From foundation mechanics to wind-farm aerodynamics
(2018)

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Then some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.