Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe
  • Organisationseinheit der BAM
  • 7 Bauwerkssicherheit

7.2 Ingenieurbau

Filtern

Autor

  • Auersch, Lutz (26) (entfernen)

Erscheinungsjahr

  • 2019 (5)
  • 2018 (4)
  • 2016 (4)
  • 2015 (8)
  • 2014 (3)
  • 2013 (2)

Dokumenttyp

  • Vortrag (18)
  • Beitrag zu einem Tagungsband (5)
  • Posterpräsentation (2)
  • Zeitschriftenartikel (1)

Sprache

  • Deutsch (26) (entfernen)

Referierte Publikation

  • nein (25)
  • ja (1)

Schlagworte

  • Bahnerschütterungen (4)
  • Dispersionsmessung (3)
  • Wellengeschwindigkeit (3)
  • Bodeneigenschaften (2)
  • Bodenübertragungsfunktion (2)
  • Elastische Gebäudelagerung (2)
  • Erschütterungsursachen (2)
  • Frequenzbereiche (2)
  • Rechenmodelle (2)
  • Zuggeschwindigkeit (2)
+ weitere

Organisationseinheit der BAM

  • 7 Bauwerkssicherheit (26) (entfernen)

26 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
Zur Wirksamkeit und Berechenbarkeit von elastischen Gebäudelagerungen (2019)
Auersch, Lutz
Es wird die Vorgehensweise erläutert wie die Notwendigkeit einer elastischen Gebäudelagerung geprüft wird. Es werden die Möglichkeiten und Schwächen vereinfachter Rechenverfahren dargestellt. Es folgen weitere Beispiele detaillierter Gebäudemodelle und ihres Schwingungsverhaltens. Schließlich greift eine aktuelle Bachelorarbeit die Fragestellung komplexen Gebäudeschwingungsverhaltens auf. Die letzte Folie zeigt dazu Gebäudemodelle, die an die konkreten Erschütterungsprognosen anknüpfen.
Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz (2019)
Auersch, Lutz
Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist.
Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz (2019)
Auersch, Lutz
Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist.
Berechnung und Beeinflussung von Deckeneigenfrequenzen (2019)
Auersch, Lutz
Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen.
Wellenmessungen zur Identifikation der dynamischen Eigenschaften von Böden (2019)
Auersch, Lutz
Erschütterungen durch Industrie und Verkehr, Schwingungen von Gebäuden, Fundamenten und Gleisen hängen im hohen Maße vom jeweiligen unterliegenden Boden ab. Die Eigenschaften des Bodens ermitteln wir mit Wellenmessungen vor Ort. Die Wellen werden in der Regel mit einem Impulshammer erzeugt und mit Geophonen als Schwinggeschwindigkeits-signale gemessen. Geophone sind aktive Sensoren, die eine kleine Messspannung liefern. Ein 72-kanaliges Messsystem mit entsprechenden Messverstärkern ist im Messwagen der Arbeitsgruppe eingebaut. Es werden im Vortrag fünf verschiedene Auswertemethoden vorgestellt. Im einfachsten Fall versucht man die Laufzeit von einem Geophon zum andern auszumessen und damit die vorherrschende Wellengeschwindigkeit zu ermitteln. Wir haben Wellengeschwindigkeiten von 30 m/s für Moorboden bis 1000 m/s für Felsboden gemessen. Der Boden hat aber nicht nur eine Wellengeschwindigkeit, sondern mehrere frequenzabhängige Wellen-geschwindigkeiten. Dadurch wird aus einem kurzen Hammerschlag eine längere Schwingung (Zerstreuung, Dispersion). Für die Auswertung von dispersiven Wellen nutzt man die spektrale Analyse, zunächst mit zwei Aufnehmern (SASW Spectral Analysis of Surface Waves), später mit einer ganzen Messachse (Multi-Station SASW). Schließlich kann man eine ganze Messachse auch mit verschiedenen Transformationsmethoden auswerten wie die f,v-Methode und Spatial AutoCorrelation SPAC Methode. Alle diese Methoden wurden von uns auf Messreisen in Deutschland, Österreich und der Schweiz getestet. Durch die Approximation der frequenzabhängigen Wellengeschwindigkeiten erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man die Übertra¬gungsfunktionen für Hammer- und Zuganregung berechnen. Bei etlichen Mess¬orten wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten.
Strukturschwingungen und Schwingungsminderung – Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM (2018)
Auersch, Lutz
Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrund-steifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsma߬nahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabge-federten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren“ Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudepara¬metern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt.
Strukturschwingungen und Schwingungsminderung - Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM (2018)
Auersch, Lutz ; Said, Samir
Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrundsteifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsmaßnahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabgefederten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren“ Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudeparametern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt.
Wellenausbreitung in geschichteten Böden – Rechenmethoden und Messbeispiele von Zug- und Gebäudeerschütterungen (2018)
Auersch, Lutz
Im ersten Teil werden Methoden der Wellenanalyse vorgestellt, Seismogramme, Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen), und auf Messungen in Deutschland, Österreich und der Schweiz angewendet. Mit den Wellengeschwindigkeiten des Bodens werden die Berechnungsgrundlagen für die Erschütterungsausbreitung im Boden und die Bauwerk-Boden-Wechselwirkung geschaffen. Der zweite Teil beschäftigt sich mit der Wellensynthese, das heißt mit der Berechnung von Wellenfeldern (aus Wellenzahlintegralen). Die Rechnungen können wesentlich vereinfacht werden, wenn man die Dimensionsanalyse und Symmetrieüberlegungen ausnutzt, so dass maximal fünf dimensionslose Verschiebungsfunktionen verbleiben (im Vollraum sind es sogar nur zwei Verschiebungsfunktionen, die sich einfach explizit angeben lassen). Es gibt Ähnlichkeiten zwischen den Halbraum-Amplituden an der Oberfläche, den Halbraum-Amplituden in der Tiefe und der Wellenausbreitung im Vollraum. Die berechneten Wellenfelder (als Terzspektren in verschie-denen Entfernungen von der Erschütterungsquelle) werden verwendet, um die gemessene Übertragungsfunktionen des Bodens zu approximieren und Erschütterungen von Zugvorbeifahrten zu prognostizieren. Auch dies wird an einigen Messorten vorgeführt. Dabei werden einige gemessene Besonderheiten der Eisenbahnerschütterungen mit dem geschichteten Aufbau des Bodens erklärt. Der dritte Teil beschäftigt sich mit der Anwendung der Wellenfelder beziehungsweise der Punkt-lastlösungen beziehungsweise der Greenschen Funktionen in der Randelementmethode. Es wird ein einfaches Prinzip der Herleitung der Randelementmethode vorgeführt. Bei einer beliebigen Berandung benötigt man neben den Verschiebungswellenfeldern auch die Spannungswellen-felder. Eine einfache Berechnung der Spannungswellenfelder wird vorgeführt, die im Vollraum auf drei Spannungsfunktionen, ähnlich einfach wie die Verschiebungsfunktionen, führt. Durch die Kopplung der Randelementmethode mit der Finite-Element-Methode können dann Probleme der Bauwerk-Boden-Wechselwirkung gelöst werden. Der vierte Teil beschäftigt sich schließlich mit der Freifeld-Wellenanregung unter einem Gebäude und der Wellenanregung im Gebäude. Dabei geht es um die Wechselwirkung der Freifeldwellen mit starren oder flexiblen Fundamenten (Pfählen, Fundamentplatten) und den Übertragungs-faktoren zwischen dem Freifeld und dem Gebäude. Bei der Wellenanregung in einem Büro-gebäude in Wien konnten die gleichen Methoden wie bei der Wellenanregung im Boden eingesetzt werden, Seismogramme, MASW, Übertragungsfunktionen und Amplituden-Abstandsgesetze.
Dynamisches Verhalten intakter und geschädigter Bahnfahrwege - Messung und Berechnung (2018)
Auersch, Lutz
Zugüberfahrt mit 14 Wagen bzw. Ausschnitt von 2 Wagen, Messung Tragplatte bzw. Schwelle. Berechnung Tragplatte bzw. Schwelle. Hammerschlag und Berechnung von Betrag und Phase zwischen 0 und 150 Hz von Schiene, Schwelle, Tragplatte, Trog, Tragschicht und Untergrund.
Die Bedeutung von Eisenbahn-Achsüberfahrten für die Bodenerschütterungen und Brückenschwingungen (2016)
Auersch, Lutz
Messungen bei Fern- und Hochgeschwindigkeitsbahnen aus verschiedenen Ländern (Portugal, Spanien, Belgien, Großbritannien, Deutschland, Schweiz, China, Japan u.a.) sollen die besondere Wichtigkeit eines mittelfrequenten Erschütterungsanteils zeigen. Relativ einheitlich werden dabei drei zusammenhängende Terzen mit angehobenen Amplituden beobachtet. Dieser Erschütterungsanteil dominiert mit zunehmender Entfernung vom Gleis das Frequenzspektrum der Erschütterungen. Die hochfrequenteren Anteile nehmen aufgrund der Materialdämpfung des Bodens stärker ab, die tieffrequenteren Anteile aus der sogenannten Quasistatik, der Vorbeifahrt der statischen Achslasten, verschwinden innerhalb der ersten zehn Meter vom Gleis fast vollständig. Die Frequenzcharakteristik des mittelfrequenten Erschütterungsanteils wird durch die Achsfolge des Zuges bestimmt. Im Terzmaßstab ist die Achsfolge im Drehgestell maßgeblich für die Ausprägung von zwei Amplitudenminima, die den Frequenzbereich eingrenzen. Diese Achsfolgespektren sind auch bei Brückenschwingungen von Bedeutung. Sie können die schwächere oder stärkere Anregung einzelner Brückeneigenschwingungen regeln. Die Ursachen der Boden- oder Brückenschwingungen sind mit den Achsfolgespektren noch nicht geklärt. Bei der Brücke und beim Boden können kurzwelligere Gleislagefehler (auch Radunrundheiten 1. Ordnung) Fahrzeugbeschleunigungen und damit dynamische Kräfte auf das Gleis erzeugen. Bei der Brücke ist die diskontinuierliche Auf- und Abfahrt der Achsen ebenfalls eine relevante Anregung, während die Kraftimpulse auf das Gleis, die durch die Achsüberfahrten entstehen, für die Wellenausbreitung im Boden von Bedeutung sind. Heterogene Böden oder Gleise ergeben einen Zerstreuanteil der Achsüberfahrtimpulse. Fallbeispiele mit verschiedenen Böden und verschiedenen Fahrgeschwindigkeiten werden ausgewertet, um die Ursachen und Gesetzmäßigkeiten des mittelfrequenten Erschütterungsanteils zu erkennen.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks