## 7.2 Ingenieurbau

### Filtern

#### Dokumenttyp

- Vortrag (182)
- Beitrag zu einem Tagungsband (84)
- Posterpräsentation (20)
- Zeitschriftenartikel (15)
- Buchkapitel (9)
- Dissertation (3)
- Beitrag zu einem Sammelband (2)
- Tagungsband (Herausgeberschaft für den kompletten Band) (1)
- Forschungsbericht (1)

#### Referierte Publikation

- nein (317) (entfernen)

#### Schlagworte

- Fatigue (16)
- Ground vibration (10)
- Finite element method (8)
- Monitoring (8)
- Slab track (7)
- Soil-structure interaction (7)
- Concrete (6)
- Grout (6)
- Impact (6)
- Offshore (6)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (317)
- 7.2 Ingenieurbau (317)
- 7.4 Baustofftechnologie (20)
- 8 Zerstörungsfreie Prüfung (18)
- 7.1 Baustoffe (12)
- 8.3 Radiologische Verfahren (8)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (7)
- 7.0 Abteilungsleitung und andere (5)
- 7.3 Brandingenieurwesen (2)
- 7.5 Technische Eigenschaften von Polymerwerkstoffen (2)

The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness Interface element of Beer is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The Mohr-Coulomb and Clough and Duncan models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of
elasto-plasticity such as: Lashkari and Mortara were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as:
relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end.

This paper presents the impact of dynamic loading on the deterioration of ballasted track. Firstly it is discussed which types of loading can be observed at the track. The effects of cyclic and dynamic loading on the ballast assembly are discussed with respect to the different boundary conditions of physical model tests compared to those existing in reality. For dynamic loading, on the one hand, the displacements and rotations of single particles at the surface become more important. On the other hand, the load distribution caused by an impact like loading is different from a quasistatic loading. Finally, large scale tests are presented. When comparing the dynamic loading sequences with the solely cyclic loading, limits are found for a vibration level that is associated with an accelerated accumulation of permanent deformations.

The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through interface elements and adequate constitutive models. In this work, a constitutive model in the framework of Generalized Plasticity for sandy soils has been chosen to be adapted for the interface zone.
From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data.

The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data.

Driven steel piles are commonly used as deep foundations for a wide range of engineering structures, particularly in the offshore branch. They are also an interesting example among the broad spectrum of geotechnical applications where the fluid-solid interaction at the pore-scale can play a major role for the macromechanical behaviour of the whole system.
In the context of the geotechnical practice for offshore wind-farm structures, both the industrial design and the actual dimensions of the large piles used as foundations in the seabed are often driven by factors such as the soil resistance to driving (SRD), which are still not well understood and often estimated based on mere empirical correlations or overly simplified one-dimensional models. In particular, the role of the micromechanical effects during the installation process (e.g. local dilatancy or contractancy) and their consequences on the pore pressure levels at the pile-tip and on the effective resistance to driving, are generally either disregarded or at most assumed to be covered by the simplified engineering “black-box” solutions.
Here, we propose a general framework to address such local aspects of a geotechnical application involving fluid-saturated soils while retaining the focus on the micro-scale phenomena. We advocate for an approach that combines the relative simplicity of the Discrete Element Method (DEM) for the solid mechanics with the capabilities of the Lattice Boltzmann Method (LBM) for the fluid dynamics. In this sense, we aim to compile some useful techniques and practical recommendations for an efficient GPU-based implementation of a micromechanical LBM-DEM simulation tool.

This paper presents a three dimensional numerical model which is can be used to
investigate the effects on the track and in its vicinity due to a train passage. The numerical
model for train track interaction is based on a time domain dynamic finite
element model. Due to the unbounded nature of the soil the truncated boundary of the
finite element domain is modelled with the scaled boundary finite element method,
which is a semi-analytical approach. The application for a heterogeneous track along
the track line is exemplified by a track with a bridge structure, where close attention
is paid to the wheel-rail contact force. The results indicate that the wheel-rail contact
force is not symmetrical around the bridge structure and an optimisation in terms of a
backfilling area and under-sleeper-pads can improve such a transition.

Die BAM unterstützt das Bundesamt für Seeschifffahrt und Hydrografie bei der bautechnischen Bewertung von Tragstrukturen für Offshore-Windparks. Im Hinblick auf die vielfältigen nationalen Aktivitäten in Forschung und Entwicklung wird in der eingeladenen Präsentation auf Schwerpunkte behördlicher Erfahrungen und Bedenken Bezug genommen um eine Perspektive auf zukünftigen Forschungsbedarf zu eröffnen.

Identifying optimal inspection and repair strategies for offshore jacket structures is a challenging task. We pre-sent an approach, which is based on recent developments in the field of risk-based operation and maintenance planning at the structural system level. The approach utilizes heuristics to define inspection and repair strate-gies at the system level and to reduce the search space of possible strategies. For each defined strategy, the expected service life cost of inspection, repair and failure is evaluated based on simulated inspection and re-pair histories. Subset simulation is applied to compute the conditional repair and failure probabilities required for this analysis. It also forms the basis for simulating inspection and repair histories. The strategy that mini-mizes the expected service life cost is the optimal one in the set of pre-selected strategies. The underlying condition and performance model accounts for the stochastic dependence among the deterioration states of the different structural elements and the structural redundancy. The approach is demonstrated in a case study considering a jacket-type frame. In this study, we essentially vary the inspection interval, the minimum num-ber of inspected components and the target reliability, and identify the combination that minimizes the ex-pected total service life cost.