6 Materialschutz und Oberflächentechnik
Filtern
Dokumenttyp
- Beitrag zu einem Tagungsband (4) (entfernen)
Referierte Publikation
- ja (4) (entfernen)
Schlagworte
- Wear (4) (entfernen)
Organisationseinheit der BAM
The influence of temperature and counterbody material on the tribological properties of a-C:H coatings deposited on Cronidur 30 steel has been investigated in a lubricated ball on disk contact situation. The results show, that the wear volumes of the system increase exponentially with increasing temperature. Two different wear mechanisms seem to have a major influence: First, the abrasive action due to materials hardness and second, the tribooxidation when silicon nitride is counter material.
The tribological profile of rotating disks made of binder-less niobium carbide (hot-pressed NbC) and cobalt-bonded NbC (NbC-8Co) mated against alumina (99.7%) were determined under unidirectional sliding tests (0.1 m/s to 8.0 m/s; 22°C and 400°C) as well as in oscillation tests (f= 20 Hz, Δx= 0.2 mm, 2/50/98% rel. humidity, n= 105/106 cycles) under un-lubricated (dry) conditions. In addition, the microstructure and mechanical properties of NbC and NbC bonded with 8% cobalt were determined as well. The tribological data obtained were benchmarked with different ceramics, cermets, hard metals and thermally sprayed coatings, where the NbC-8Co presented above 7 m/s the lowest wear rates so far in such a bench mark. NbC and NbC-8Co exhibited low wear rates under dry sliding associated with P·V high load carrying capacity. The tribological profile established revealed a strong position of NbC bearing materials under tribological considerations and for closed tribo-systems against traditional references.
The tribological profile of rotating disks made in binder-less niobium Carbide (hot-pressed NbC) and cobalt-bonded NbCs (NbC-8Co and NbC-12Co) mated against alumina (99.7%) were determined under unidirectional sliding tests (0.1 m/s to 8.0 m/s; 22°C and 400°C) as well as in oscillation tests (f= 20 Hz, Ax= 0.2 mm, 2/50/98% rel. humidity, n= 105/l 06 cycles) under unlubricated (dry) conditions. In addition, the microstructure and mechanical properties of HPNbCl and NbC bonded with 8 vol.-% and 12 vol.-% cobalt were determined as well. The tribological data obtained were benchmarked with different ceramics, cermets, hard metals and thermally sprayed coatings, where the NbCs bonded with 8% and 12% Co presented above 7 m/s the lowest wear rates so far in such a bench mark. HP-NbCl, NbC-8Co and NbC-12Co exhibited low wear rates under dry sliding associated with PV high load carrying capacities. The tribological profile established revealed a strong position of NbC bearing materials under tribological considerations and for closed tribo-systems against traditional references.