## 5 Werkstofftechnik

### Filtern

#### Erscheinungsjahr

- 2016 (24) (entfernen)

#### Dokumenttyp

- Vortrag (10)
- Zeitschriftenartikel (6)
- Posterpräsentation (6)
- Beitrag zu einem Tagungsband (2)

#### Sprache

- Englisch (24) (entfernen)

#### Schlagworte

- Microplastics (5)
- Microplastic (3)
- PE-HD (3)
- Biodiesel (2)
- CFRP (2)
- Central venous access port (2)
- Complication (2)
- Diesel (2)
- FRP (2)
- Polymers (2)

#### Organisationseinheit der BAM

- 5.3 Mechanik der Polymerwerkstoffe (24) (entfernen)

Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low
frequencies (0.3–33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young’s modulus (Y´
11~1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix.
The out-of-plane Young’s modulus is very small (Y´33≈0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The highfrequency mechanical response of PP FEs is shown to be linear viscoelastic with Y´33≈0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y*33 in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the Dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical Relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz–1MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.

In this work a novel iterative method for isothermal cure kinetic modelling of an epoxy resin system using differential scanning calorimetry (DSC) technique is presented. To reach the isothermal cure temperature, the sample has to be heated up from ambient temperature. This is commonly done with very high heat-up rates to minimise the time the sample reacts at temperatures other than the desired one. However, during heat up with high heating the amount of released energy rates cannot be measured directly because the shape of baseline is unknown. This means that the cure state at the beginning of the isothermal stage is unknown. For fast curing systems this unknown cure state causes significant inaccuracies in cure kinetics modelling.
The presented iterative approach attempts to estimate the released enthalpy during heat-up of an isothermal run through an iterative numerical modelling of the heat-up phase. In each iteration the algorithm starts by estimating the enthalpy released during heat-up based on the recorded temperature profile and the calibrated model of the previous iteration. At the same time, it estimates the degree of cure at the end of the heat-up phase. Once the initial cure state is known the total heat of enthalpy can be recalculated for the current iteration. Subsequently the degree of cure and curing rate are re-evaluated with the newly estimated total enthalpy and used for determining the kinetics parameters. This is done by simultaneous fitting of the selected model to all experimental heat flow curves using a non-linear nonrestricted multivariable fitting method. The model with these new parameters is used again to estimate the released enthalpy and cure degree during the heat-up phase. The described loop is repeated until a predefined convergence criterion is satisfied.
For modelling the reaction kinetics, the Kamal–Sourour equation accompanied with Rabinowitch approach to consider the diffusion effects is used. The diffusion reaction rate is modelled by the free volume model proposed by Huguenin and Klein. DiBenedetto model is applied to predict the Evolution of glass transition temperature against the degree of cure. In order to compensate the effect of the Initial values in the model’s calibration, the algorithm is implemented in a routine, which assesses the quality of the fitting and consequently selects the cure kinetics parameter. The described algorithm and the Routine are implemented in MATLAB. This paper demonstrates the application of this approach for using cure kinetics modelling to predict the degree of cure and the glass transition temperature. It supports the obtained results with validation tests using isothermal, dynamic and combined temperature profiles.

In previous papers, we investigated the influence of biodiesel or diesel on mechanical properties of a high-density polyethylene (PE-HD) for tank applications using Charpy impact tests and dynamicmechanical analysis (DMA). In this work, covering two more PE-HD materials, we extend our study to addressing the tensile properties, especially changes of Young's modulus, after immersion in biodiesel or diesel at 60 °C. As we cover sorption and desorption behavior, during desorption, i.e. storage at 60 °C in a circulating air oven, ageing or degradation phenomena were also observed and characterized in some detail using spectral reflectance measurements and FT-IR spectroscopy. The results obtained here support the concept of co-oxidation, i.e. the faster oxidation of the PE-HD matrix if the samples were previously saturated with biodiesel, itself easily oxidizable.