5 Werkstofftechnik
Filtern
Erscheinungsjahr
- 2016 (4) (entfernen)
Dokumenttyp
- Zeitschriftenartikel (2)
- Vortrag (2)
Schlagworte
- LTCC (2)
- Co-firing (1)
- Ferrite (1)
- Ferrite integration (1)
- Glass-like carbon (1)
- Heißpressen (1)
- Hot-embossing (1)
- Low temperature co-fired ceramics (1)
- Multilayer (1)
- Pressure-assisted sintering (1)
- Schichtverbunde (1)
- Silver diffusion (1)
- Sintering (1)
- Sintern (1)
- Structuring (1)
Organisationseinheit der BAM
- 5.5 Technische Keramik (4) (entfernen)
Low-κ dielectric LTCC was developed, to realize successful co-firing with NiCuZn ferrite tapes. A critical high-temperature process in the production of highly integrated LTCC modules is the migration of silver from inner conductors into the LTCC glass phase. Intensive silver migration causes strong deformation of LTCC multilayers during firing in air.
Silver migration into the LTCC glass phase depends on oxygen content of the sintering atmosphere and can be minimized by sintering in nitrogen atmosphere. However, partial decomposition of NiCuZn-ferrite and formation of cuprite was observed during sintering in nitrogen and, consequently, the permeability of the ferrite decreases. As shown by a combined XRD/thermogravimetric study the co-firing of LTCC modules with silver metallization and integrated ferrite layer demands precise adjustment of oxygen partial pressure.
In der Keramikfertigung werden verschiedene druckunterstützte Sintertechnologien wie heißisostatisches Pressen, Gasdrucksintern und uniaxiales Heißpressen eingesetzt. Eine Variante des uniaxialen Heißpressens stellt das druckunterstützte Sintern von LTCC-Modulen dar. Es wird mit einem gegenüber dem klassischen Heißpressen deutlich reduzierten Druck von nur etwa 1 MPa operiert. Mit der Einführung der Drucksintertechnik wurde es möglich, großflächige, ebene LTCC-Schichtverbunde ohne laterale Schwindung dicht zu sintern und so eine kostengünstige Fertigung im Nutzen zu realisieren.
Mit dem Trend zur Miniaturisierung und Funktionserweiterung von Schaltungsträgern sind Applikationskonzepte entwickelt worden, die eine Integration von Mikrowellen-, Kondensator-, Piezo- und Ferritmaterialien durch Co-Sinterung beinhalten. Kavitäten und Kanäle werden benötigt, um LTCC-Schichtverbunde auch in der Sensorik und Mikrofluidik einzusetzen. Die Umsetzung dieser Konzepte erfordert häufig diffizile Sinterprogramme mit temperaturgesteuerter Einstellung von uniaxialem Druck und Sauerstoffpartialdruck.
Basierend auf den Ergebnissen zahlreicher F+E-Vorhaben werden Möglichkeiten und Grenzen der Drucksintertechnologie für die Herstellung dieser LTCC-Schichtverbunde illustriert. Vorgestellt wird ein weiterentwickeltes Drucksinteraggregat. Durch Integration von in-situ Schwindungsmessung sowie Mess- und Regeleinrichtungen für den Sauerstoffpartialdruck stehen erweiterte Möglichkeiten für die Optimierung des Drucksinterprozesses von LTCC-Schichtverbunden zur Verfügung.
The sintering behavior of sub-micron Ni0.30Cu0.20Zn0.52Fe1.98O3.99 ferrite with and without Bi2O3 addition was studied. Ferrites with 0.5 wt% Bi2O3 exhibit enhanced shrinkage at T < 900 °C with significant grain growth. Additive-free ferrite powders also sinter to high density at 900 °C, however, grain growth is very limited. Both ferrites exhibit a permeability of µ = 400–450. Multilayers consisting of ferrite and low-k dielectric LTCC layers were prepared by co-firing at 900–915 °C. The shrinkage and thermal expansion characteristics of ferrite and LTCC tapes are similar. However, the permeability of integrated ferrite layers, made from ferrite tapes with Bi2O3 additive, significantly drops after co-firing with LTCC layers compared to separately fired monolithic ferrite multilayers. Contrarily, the permeability of integrated, Bi2O3-free ferrite layers, co-fired with dielectric tapes, is identical to that of monolithic ferrite multilayers. This finding is an important step toward ferrite integration into complex LTCC multilayer architectures.
A novel process to structure the surfaces of low temperature co-fired ceramics (LTCC) is presented. Lowered and raised structures are formed by hot-embossing with glass-like carbon molds during pressure-assisted sintering. Molding is driven by viscous flow of the LTCC glassy phase above the glass transition temperature. For accurate molding of embossments on the LTCC surface, proper filling of cavities in the glass-like carbon mold is necessary. Therefore, de-airing of the mold cavity has to be assured. Two strategies have been investigated: (i) hot-embossing at 850 °C after termination of LTCC shrinkage with de-airing through vent holes in the mold; and (ii) hot-embossing of open porous LTCC at 775 °C with dense molds, de-airing through pore channels in the LTCC, and subsequent densification by further heating to 850 °C. Circular embossments with 10 mm diameter were molded on a commercially available LTCC (Ceramtape GC, CeramTec GmbH, Marktredwitz, Germany). The sintered height was measured using optical profilometry. Image processing was used to evaluate porosity distributions in the sintered structures. The influence of embossing temperature on LTCC viscosity and mold filling behavior is discussed. Successful molding of 47 µm high raised grids and characters by hot embossing with 0.41 MPa at 775 °C and further heating to 850 °C under constant load is demonstrated. Thereby, the high potential of hot-embossing for precise structuring of LTCC surfaces is illustrated.