## 5 Werkstofftechnik

### Filtern

#### Erscheinungsjahr

- 2015 (5) (entfernen)

#### Dokumenttyp

- Zeitschriftenartikel (5) (entfernen)

#### Sprache

- Englisch (5) (entfernen)

#### Referierte Publikation

- nein (5) (entfernen)

#### Schlagworte

- LTCC (2)
- BST (1)
- Crystal orientation (1)
- EBSD (1)
- EBSD pattern (1)
- Electron Rutherford backscattering (1)
- Ferroelectric (1)
- Fully printed component (1)
- Hybrid components (1)
- Kikuchi pattern (1)

#### Organisationseinheit der BAM

The kinetic energy of keV electrons backscattered from a rutile (TiO2) surface depends measurably on the mass of the scattering atom. This makes it possible to determine separately the angular distribution of electrons backscattered elastically from either Ti or O. Diffraction effects of these backscattered electrons inside the rutile crystal lead to the formation of Kikuchi patterns. The element-resolved Kikuchi patterns of Ti and O differ characteristically, but each can be described fairly well in terms of the dynamical theory of diffraction. Qualitatively, much of the differences can be understood by considering the relative arrangement of the Ti and O atoms with respect to planes defined by the crystal lattice.

Structuring of LTCC Substrates by a Combination of Pressure-Assisted Sintering and Hot Embossing
(2015)

A novel technology for the structuring of low temperature co-fired ceramic (LTCC) surfaces is introduced. The commercial LTCC Ceramtape GC is shaped in a zero-shrinkage process by embossing a glass-like carbon mold into the softened LTCC during pressure-assisted sintering. Diverse raised and lowered structures including rings, grids, and characters were fabricated. It was found that de-airing of mold cavities is crucial for the molding of embossments. De-airing is possible through pore channels in the LTCC if embossing is performed at intermediate temperatures. The influence of LTCC viscosity on the mold filling behavior during the formation of raised structures is discussed. For accurate molding and proper densification of the LTCC, hot embossing with 0.41 MPa at 775 °C and subsequent heating under load to 850 °C is proposed. Embossing of precise, 40 µm deep circular cavities and 50 µm high raised bars and characters is demonstrated. Thereby, the high potential of the hot-embossing process for micro-patterning of LTCC is illustrated.

This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

For the description of (single) crystal orientations, e.g. as measured by electron backscatter diffraction (EBSD) & X-ray diffraction (XRD), Euler angles are still generally used to import and export data. However, because of the lack of standard definitions for the unit cell reference settings and specimen axes, several transformation descriptions exist which produce different sets of Euler angles for the same orientation. There is also no recommended region within the minimal Euler orientation space into which orientations should be placed. This is the reason why different sets of Euler angles for the same orientation are generated by the available software packages for indexing EBSD patterns. These issues are reviewed and addressed.
The influence of crystal symmetry in form of chiral (enantiomorphic) groups is discussed, as well as how multiple, but symmetry-equivalent sets of Euler angles can be reduced in order to deliver a unique orientation description. The Euler coloring algorithms applied to EBSD map data is critically discussed. The specific case of cubic symmetry, especially the effect of the three-fold rotation on the Euler space is investigated in more detail for the highest-symmetric chiral group 432. Recommendations for standard settings of the unit cell to orthogonal coordinate system transformation are given which exploit inherent symmetry.