5 Werkstofftechnik
Filtern
Erscheinungsjahr
- 2016 (10) (entfernen)
Dokumenttyp
- Vortrag (6)
- Dissertation (2)
- Zeitschriftenartikel (1)
- Beitrag zu einem Tagungsband (1)
Sprache
- Deutsch (10) (entfernen)
Schlagworte
- Mikroplastik (5)
- Polymere (4)
- Analytik (1)
- Betriebsfestigkeit (1)
- Biogasanlage (1)
- CFRP (1)
- Ermüdungsrisswachstum (1)
- FVK (1)
- Faser-Kunststoff Verbunde (1)
- Glaskapillaren (1)
Organisationseinheit der BAM
- 5.3 Mechanik der Polymerwerkstoffe (10) (entfernen)
Durch den stetig steigenden Einsatz von Plastikprodukten sind unerwünschte Kunststofffunde in verschiedenen Umweltmatrices mittlerweile allgegenwärtig. Besonderes Interesse erfahren die Kunststoffpartikel von einer Größe kleiner 5 mm, sogenannte Mikroplastik (MP) Partikel und deren ausgehende Risiken auf Mensch und Umwelt
Durch den stetig steigenden Einsatz von Plastikprodukten sind unerwünschte Kunststofffunde in verschiedenen Umweltmatrices mittlerweile allgegenwärtig. Bereits seit Jahren werden die Funde in aquatischen Bereich kommentiert, mittlerweile erfahren auch terrestrische Kompartimente erhöhte Aufmerksamkeit.
Besonderes Interesse erfahren Kunststoffpartikel von einer Größe kleiner 5 mm, sogenannte Mikroplastik (MP) Partikel.
Durch den stetig steigenden Einsatz von Plastikprodukten sind unerwünschte Kunststofffunde in verschiedenen Umweltmatrices mittlerweile allgegenwärtig. Besonderes Interesse erfahren die Kunststoffpartikel von einer Größe kleiner 5 mm, sogenannte Mikroplastik (MP) Partikel. Es werden aktuell Risiken für Mensch und Umwelt diskutiert, die von diesen Partikeln ausgehen.
Die Anwendung thermoanalytischer Methoden für die Polymercharakterisierung hat aufgrund der makromolekularen Struktur von Polymere Vorteile. Es wurden zwei neue thermoanalyti-sche Verfahren entwickelt und deren Einsatz anhand von Anendungsbeispielen demons-triert, sowie mit etablierten, thermoanalytischen Methoden verglichen.
Für die thermische- und thermo-oxidative Zersetzungsgasanalytik wurde die Thermogravi-metrie (TGA) gekoppelt mit der Thermodesoptions-Gaschromatographie-Massenspektrometrie (TDS-GC-MS). Die Zersetzungsgase der TGA wurden dafür über ei-nen Festphasenadsorber geleitet, auf dem eine repräsentative Auswahl von polymerspezifi-schen Analyten adsorbiert wurde. Die thermische Extraktion der Analyten erfolgte in der TDS-GC-MS. Dies ermöglichte die Trennung der Analyten sowie die eindeutige Identifizie-rung mittels charakteristischer Massenfragmentmuster. Sie wurde als TED-GC-MS bezeichnet. Es stellte sich heraus, dass sie sich besonders für die Analyse von komplexen Kohlen-wasserstoffgemischen mit Molmassen von mehr als 100 g/mol eignet. In Kombination mit anderen Kopplungstechniken wie beispielsweise die TGA-FTIR/MS, die speziell für die Ana-lyse von kleineren Molekülen verwendet wurde, konnten neue grundlegende Zersetzungs-mechanismen entwickelt werden. Es wurde beispielsweise sichtbar, dass sowohl bei der thermischen als auch bei der thermo-oxidativen Degradation von Polyamid 66 (PA 66) Kon-densationsreaktionen eine wichtige Rolle spielen. Die Methode erwies sich darüber hinaus als besonders geeignet für die Identifizierung und Quantifizierung von Polymeren in Umweltproben. Es entstand dazu eine erste grundlegende Arbeit für die quantitative Bestimmung von Polyethylen (PE) Mikroplastik in Umweltproben.
Im zweiten Teil der Arbeit wurde eine steuerbare beheizbare Zelle eingeführt. Mit ihr war es möglich, mit Hilfe der Nahinfrarotspektroskopie (NIR), sich verändernde Netzwerkstrukturen während der Härtung sichtbar zu machen. Vergleichend dazu wurden etablierte, kalorische Messungen durchgeführt. Somit konnten für verschiedene Epoxidsysteme die Aushärtegrade während der Härtung mit variablen Heizraten bestimmt werden. Dadurch konnten Aushär-tungskinetiken erstellt werden, die durch isotherme und komplexe Aushärtungsszenarien validiert wurden.
Faser-Kunststoff Verbunde und insbesondere Kohlenstofffaserverstärkte Kunststoffe werden bereits im Bereich der hohen (HCF) und sehr hohen Lastspielzahlen (VHCF) eingesetzt. Während statische Festigkeiten für diese Materialien bereits gut vorhersagbar sind, gibt es noch keine verlässliche Methode Schwingfestigkeiten zu bestimmen.
Vergangene Studien an Faser-Kunststoff Verbunden an der BAM zeigten, dass bei Schwingbelastung Mikrorisse und Zwischenfaserrisse bereits weit vor dem finalen Versagen auftreten. Diese Schäden erhöhen die innere Oberfläche des Materials. Die Änderung der inneren Oberfläche kann mittels der Röntgenrefraktion bestimmt werden.
Damit konnte im Rahmen der aktuellen Arbeit eine Lastgrenze ermittelt werden, bei der im untersuchten Lastwechselbereich keine Mikrorisse auftreten. Unter den gegebenen Material- und Versuchsparametern kann damit von einer ermittelten Dauerfestigkeitsgrenze gesprochen werden.
In den Blattschalen von Rotorblättern von Windenergieanlagen (WEA) bilden sich häufig weit vor der projektierten Lebensdauer von 20 Jahren Risse aus. Durch Witterungseinflüsse kommt es zum Schadenfortschritt. Die Folge sind der Stillstand der Anlage und kostenintensive Reparaturen am Turm oder der komplette Austausch der Rotorblätter. Als eine mögliche Ursache der Rissentstehung und des Risswachtums gelten fertigungsbedingte Imperfektionen. Aufgrund der Effizienz werden Komponententests mit repräsentative Schalensegmenten und –ausschnitten von Rotorblättern angestrebt. Für diese Untersuchungen wurde ein Versuchsstand für die Prüfung von Schalenstrukturen konstruiert und an der BAM betrieben. Mit dem Versuchsstand kann der Einfluss von fertigungsbedingten Imperfektionen auf die Rissentstehung und das Risswachstum untersucht werden. In dem Prüfstand werden gekrümmte Sandwichschalen mit eingebrachten Imperfektionen (z.B. Schaumstöße, Laminatabstufungen) unter schwellender Druckbelastung untersucht. Die aufgebrachte Last entspricht realistischen Belastungsniveaus (z. B. 50 Jahres Böe) von Rotorblättern. Die in situ Zustandsüberwachung erfolgt kombiniert mittels Thermografie und der optischen 3 D Felddehnungsmessungen. Mit dem optischen 3 D Felddehnungssystem (ARAMIS) werden die In- und Out-Off-Plane Verformungen der Sandwichschale unter der zyklischen Schwingbelastung detektiert. Die zerstörungsfreie Detektion der Werkstoffermüdung (z.B. Risse) in den Schalenprüfkörpern infolge der zyklischen Beanspruchung erfolgt mittels begleitender passiver Thermografie. Mit den durchgeführten Versuchen konnte der Einfluss der unterschiedlichen fertigungsbedingten Imperfektionen auf die Betriebsfestigkeit der Sandwich Schalenprüfkörper herausgestellt werden. Aus diesen Erkenntnissen wurden für den Rotorblattbau Design Hinweise abgeleitet. Weiterhin wurde in den Versuchen die Eignung der kombinierten Zustandsüberwachung für die Detektion der Verformungsänderungen, Schadensentstehung und dem Schadensfortschritt nachgewiesen. Die kombinierte Zustandsüberwachung mittels Thermografie und der optischen 3 D Felddehnungsmessung eignet sich sehr gut zur Schadensdetektion von Sandwichstrukturen unter Schwingbeanspruchung.
Wasserstoff spielt eine wichtige Rolle im Bereich der erneuerbaren Energien. Um die hohe gravimetrische Energiedichte auszunutzen, bietet sich die die Hochdruckspeicherung an.
Um die theoretische Festigkeit, die geringe Wasserstoffpermeabilität vom Werkstoff „Glas“ und das Wissen von Griffith auszunutzen, sollten Glaskapillaren zum Einsatz kommen. Glas bietet diverse Möglichkeiten solche Kapillaren anzuordnen. Es beginnt bei der Bündelung von Einzelkapillaren und geht bis hin zu ganzen Strukturen.
Allerdings stellt sich auch die Frage wie die Berstdruckfestigkeit optimal ausgenutzt und dabei noch die Permeation und das mechanische Langzeitverhalten beachtet werden kann. Ziel dieser Arbeit ist es, die wichtigen Einzelkomponenten diesbezüglich zu untersuchen und einen Langzeitspeicher mithilfe von Simulationen auszulegen.
Die Schädigung von Gefahrgutbehältern während ihres Transports durch Korrosion und Ermüdungsrisswachstum sind Ursache von Unfällen, die Menschenleben gefährden, die Umwelt schädigen und hohe Sachschäden verursachen. Um solchen Unfällen vorzubeugen, werden präventive Intervallprüfungen durchgeführt. Diese sind jedoch kostenintensiv, unter anderem durch die Standzeit der Transportmittel. Eine Alternative bietet die Idee einer kontinuierlichen Zustandsüberwachung mittels Schallemissionsprüfung (SEP). So sollen Materialfehler sofort nach dem Entstehen entdeckt und repariert werden können. Die Schallemissionsprüfung ist eine online Methode der Familie der zerstörungsfreien Prüfung. Schallemission (SE) wird durch Veränderungen im Material erzeugt und durch elastische Wellen als Körperschall transportiert. Erzeugt das Schallemissionsereignis genug Energie, damit sich eine elastische Welle bis zum Rand eines Bauteils ausbreiten kann, entsteht dort eine Oberflächenverschiebung im Pikometer-Bereich, die mithilfe von piezoelektrischen Sensoren detektiert werden kann. Der Sensor gibt ein elektrisches Signal aus. Aus diesem transienten SE-Signal lassen sich SE-Parameter wie die Maximalamplitude oder die Frequenz extrahieren. Durch Methoden der Signalanalyse können Signalgruppen in der Zeit- und Frequenzebene untersucht werden. Durch Wellenmodenanalysen lassen sich beispielsweise Aussagen über die Art der Quelle machen. Diese Methoden werden angewendet, um aus dem SE-Signal Rückschlüsse auf die Quelle der Schallemission zu ziehen. Werden definierte Schadensmechanismen erkannt, können Hinweise auf den Schadenszustand des Bauteils gegeben werden. Durch Schallemission, die durch den Rissfortschritt erzeugt wird, kann beispielsweise ein Zusammenhang zur Rissfortschrittsrate und zum Spannungsintensitätsfaktor geschlossen werden. Eine neue Entwicklung im Bereich der Schallemissionsprüfung ist die Mustererkennung von SESignalen. Aus den Signalen werden spezifische Merkmale extrahiert, die sie ihren Schadensmechanismen zuordnen sollen. Für die Schadensmechanismen Korrosion und Ermüdungsrisswachstum findet in dieser Arbeit eine vergleichende Analyse von SE-Signalen statt. Die Schadensmechanismen werden anwendungsnah auf großen Platten in der Wärmeeinflusszone einer Schweißnaht generiert und ihre SE-Signale definiert aufgenommen. Dafür werden Resonanzsensoren verwendet, die auf der einen Seite durch ihre Frequenzabhängigkeit sehr empfindlich die kleinste Oberflächenbewegungen reagieren und somit auch für die Anwendung in einer Zustandsüberwachung geeignet sind, jedoch andererseits frequenzbasierte Methoden der Signalanalyse erschweren. Es werden reines Ermüdungsrisswachstum, Ermüdungsrisswachstum unter dem Einfluss von Korrosion sowie reine Oberflächenkorrosion generiert. Die Signalgruppen der Schadensmechanismen werden anhand ihrer Parameter verglichen; anhand von Wellenmodenanalysen können erste Unterschiede, trotz des starken Sensoreinflusses im Frequenzbereich, festgestellt werden. Der Schadenszustand der Proben wird durch bruchmechanische Kenngrößen in Zusammenhang mit SE-Parametern der Signalgruppen gebracht. Ferner findet eine Mustererkennung der SE-Signale statt. Dafür werden zwei Methoden des überwachten Lernens verwendet: eine automatisierte Merkmalsauswahl mithilfe eines kommerziellen Mustererkennungssystems, bei dem hauptsächlich frequenzabhängige Merkmale generiert werden sowie eine parameterbasierte Mustererkennung. Bei der parameterbasierten Mustererkennung wird die Einteilung in Signalklassen aufgrund der Häufigkeitsverteilung der SE-Parameter aus den Signalen der untersuchen Schadensmechanismen vorgenommen. Dabei ergeben beide Methoden, insbesondere für die Schädigung durch Korrosion, eine gute Zuordnung der SE-Signale in die richtige Schädigungsklasse. Abschließend findet unter Berücksichtigung der Nachweisbarkeit von SE-Ereignissen und der Klassifizierbarkeit von SE-Signalen eine Einschätzung zu Chancen und Risiken der permanenten Zustandsüberwachung mittels Schallemissionsprüfung statt. Dazu werden unter anderem eigene Messungen an Tankfahrzeugen hinzugezogen sowie Ergebnisse aus zyklischer und statischer Belastung verglichen. Es wird eine Abschätzung zur Wahl der Überwachungsmethode an Gefahrgutbehältern gegeben.