## 4 Material und Umwelt

### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (3) (entfernen)

#### Referierte Publikation

- ja (3) (entfernen)

#### Schlagworte

- Anchoring (1)
- Certification guidelines (1)
- Creep (1)
- Creep rupture (1)
- Drain core stability (1)
- Drainage (1)
- Filtration criteria (1)
- Geocomposite drains (1)
- Geogrid (1)
- Geotextile (1)

#### Organisationseinheit der BAM

- 4.3 Schadstofftransfer und Umwelttechnologien (3) (entfernen)

Geogrids, which are installed to prevent sliding failure on long and steep slopes, have to be safely anchored. The design and calculation of the anchorage is based on simple design rules. Basically, it is assumed that the pull-out resistance is proportional to the soil shear strength, the vertical load and the anchoring length and that the soil-reinforcement coefficient of proportionality as determined in pull-out tests is typically in the range between 0.5 and 1. Based on an extended version of a model for the soil-geogrid interaction, which was described by Ziegler and Timmers (2004) and Sieira et al. (2009), the physical assumptions and limitations of these rules are discussed. For those geogrids, for which the passive thrust mobilization of earth pressure by the displacement of the transversal or bearing force grid elements substantially contributes to the pull-out resistance, the mechanical strength of the junction between longitudinal and transversal elements is of crucial importance. The relation between mechanical properties of the junction, the flexibility of the longitudinal grid elements, the surface friction and the finally achieved pull-out resistance is exemplarily shown by a model calculation. It is included, that due to aging and creep the short-term junction strength may be significantly lower than the long-term strength. There is a certain critical pull-out resistance and an associated critical anchorage length. Both are determined by the strength of the junction embedded into the soil and are independent from the actually installed anchorage length. For a safe design it is not allowed to go beyond that limit. This requirement restricts the range of application of the common design rules. It follows that not only the long-term strength of the longitudinal elements has to be considered and quantified by reduction factors but also the long-term strength of junctions. These limitations have to be observed to achieve a safe design of the anchorage. Preliminary design rules are discussed.

Like all plastic products, geocomposite drains (GCD) are susceptible to creep and creep rupture. The GCD is slowly and continuously deformed under long lasting shear and pressure forces. The thickness is reduced and thereby the water flow capacity. If the in-plane deformation reaches a critical value in the course of time, shear failure might occur. Likewise, if the thickness reaches a critical value the structure of the drain core might collapse. These effects are shown using data provided by the manufacturers of four different GCD. Long-term water flow capacity and the acceptable limits of shear stress and normal stress (pressure) with respect to shear rupture and drain core stability as well as the lifetime with respect to these failure modes are determined using standard test methods. The design of long lasting geotechnical structures has to take into account these characteristics of the long-tem performance of GCD.

The German landfill ordinance includes a certification requirement for geosynthetics used in landfill liner and capping systems. The certification guidelines describe the basis for the design of geosynthetics used in landfill construction. According to the rules which are usually applied, the thickness of the filter geotextile has to be at least 30 times the characteristic opening size O90. Filter geotextiles which are often used in geocomposite drains have a mass per area of 200 g/m² and do not fulfill this requirement.
In this paper modified filter criteria for geosynthetics are presented with a particular focus on These geotextile filters in geocomposite drains.