4 Material und Umwelt
Filtern
Dokumenttyp
- Posterpräsentation (13) (entfernen)
Schlagworte
- Biofilm (13) (entfernen)
Organisationseinheit der BAM
- 4 Material und Umwelt (13) (entfernen)
Microbiological biofilms on rocks are ubiquitous in nature and their influence on soil formation through rock weathering has been shown (Gorbushina 2007). However, most previous studies on rock weathering are limited to understanding the physical and chemical aspects overlooking the impact of biota. Due to the enormous amounts of variables that come with a biological process, the quantification of its influence is only possible by using well-controlled and simplified laboratory models. Thereby gaining more insight on the impact of rock inhabiting biofilms on mineral weathering. This presentation will show the impact of biotic weathering in terms of olivine dissolution rates
Natural forsterite was incubated in batch reactor flasks with and without a model consortium consisting of the phototrophic cyanobacterium Nostoc punctiforme and the rock-inhabiting ascomycete Knufia petricola, and submerged in a growth solution (pH 6). The flasks were incubated for 30 days under 25°C, 90 µmol photons/m2s and were shaken at 150 rpm. qPCR was performed to quantify the cell number of both organisms, BET to gather the specific surface of the used olivine and ICP-OES to follow up the change of concentration of the leached out metals.
Our results show that our model consortium, especially K. petricola does increase the dissolution rate of olivine. The pH increased from the initial 6 to around 7.2 for all setups. Initially Mg was preferentially released over Si (Mg/Si of 3.5), until after two days the ratio starts equilibrating around stoichiometric dissolution. During this timeframe the dissolution rate drops by nearly two orders of magnitude, just as observed by Daval et al., (2011). The difference in dissolution rates between the different setups is initially non-existent, but increases over time. After 30 days the setup with K. petricola gives a dissolution rate of 1.08 10-13 moles/cm2s, compared to 9.23 10-14 moles/cm2s for the abiotic setup.
We expect this study to cause awareness on the impact of microbiology on mineral weathering. Additionally it is a starting point for other, more complicated experiments using for instance flow through or drip flow reactors or other minerals.
Microbiologically influence corrosion (MIC) has become a big concern due the increased usage of different metals by our society. Microorganisms can use metal as an electron donor, causing unpredictable but serious damages. Nowadays it is known that besides sulfate reducing bacteria (SRB), other microorganisms including acetogens, iron oxidizers and methanogens can also induce MIC. Current studies related to methanogen-induced MIC (MI-MIC) mainly focused on environmental isolates from the oil and gas industry (e.g. Methanococcus maripaludis) with industrial materials e.g. iron. However, MI-MIC can occur in many other environments as well, including the oral cavity. Methanobrevibacter oralis is a methanogen isolated from the human oral cavity and was found more frequently in patients suffering from peri-implantitis/periodontitis. Titanium-implants removed from those patients have also showed clear signs of corrosion. The aim of our study is to establish and analyze corrosion potentials of dental metals (e.g. titanium) by oral methanogens. Periodontal pockets samples from patients suffering from periodontitis/peri-implantitis were taken for methanogenic and SRB enrichments. Stainless steel, pure titanium or Ti-6Al-4V alloy was used for corrosion studies. Corrosion rates and methane production were measured using weight-loss method and gas chromatography, respectively. Metal surfaces were visualized with scanning electron microscopy. Microbial communities in the dental pockets of healthy people and patients will be compared using 16S rRNA amplicon sequencing. Overall, this is the first study investigating the susceptibility of different dental implant materials to corrosion using human-related Archaea. The outcomes of this study can be further explored for a variety of clinical applications.
Different environmental samples reveal that methanogenic Archaea are part of a
multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial
influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB),
leading to the assumption that they are exclusively responsible for metal corrosion.
In fact, methanogenic Archaea are known to be involved in metal corrosion as well
(e.g.Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic
Archaea have comparable high corrosion rates. However, the underlying
mechanisms causing corrosion are still unknown. The goal of this study is to
analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis
KA1) and two human-related isolates (Methanobrevibacter oralis and
Methanobrevibacter smithii) for their ability to deteriorate/transform metals,
which are relevant for technical and clinical applications. Moreover, the studies will
provide essential information on the interaction mechanisms of human-related
Archaea, which are frequently found in peri-implantitis, with dental material such
as implants, crowns and bridges leading to their degradation/transformation.