3.3 Sicherheit von Transportbehältern
Filtern
Dokumenttyp
- Vortrag (79)
- Beitrag zu einem Tagungsband (58)
- Posterpräsentation (16)
- Zeitschriftenartikel (10)
- Buchkapitel (5)
- Beitrag zu einem Sammelband (2)
- Monografie (1)
- Dissertation (1)
Schlagworte
- Transport (19)
- Radioactive material (18)
- Transport packages (17)
- IAEA (14)
- Drop test (13)
- Wood (12)
- Transportbehälter (9)
- Fire test (8)
- Impact limiter (8)
- Spent nuclear fuel (8)
Organisationseinheit der BAM
- 3.3 Sicherheit von Transportbehältern (172)
- 3 Gefahrgutumschließungen (171)
- 3.4 Sicherheit von Lagerbehältern (20)
- 3.0 Abteilungsleitung und andere (6)
- 8 Zerstörungsfreie Prüfung (6)
- 3.2 Gefahrguttanks und Unfallmechanik (4)
- 7 Bauwerkssicherheit (3)
- 2 Chemische Sicherheitstechnik (2)
- 3.1 Gefahrgutverpackungen (2)
- 7.2 Ingenieurbau (2)
Numerical Analysis for an Electro‐Magneto‐Mechanical Phenomenon with High‐Order Accurate Methods
(2021)
This paper establishes an axisymmetric model for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the MAXWELL equations are presented and compared and discussed in the example. A high order finite element discretization using GALERKIN's method in space and the generalized NEWMARK‐α method in time are developed for the electro‐magneto‐mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined.
Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel.
To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers.
Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport.
Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different Transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under Transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel.
To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a segment of a spent fuel assembly are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Explicit dynamic finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. A beam element formulation is used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The load applied is gathered from experimental drop tests with spent fuel casks performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by
simulating the test setup of JRC and optimizing the results to fit the
experimental load deflection curve. The simulations of the fuel Assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport.
An established method for characterizing cladding material is the Ring Compression Test (RCT), where a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a fuel rod load case and has shown a high susceptibility to failure under the occurrence of radial hydrides. Certain hydride morphologies and low temperature might even lead to brittle fracture at very small loads. The BAM research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) aims to study the results of quasi-static RCTs and to establish numerical models to gain an in-depth understanding of the stress state during such experiments. Using a fracture mechanical approach, cases of sudden failure during the RCT procedure are used to characterize the material behaviour and establish a failure criterion.
As an integral part of the project BRUZL, quasi-static Ring Compression Tests have been performed to identify all experimental details, which might be helpful for numerical modelling. Unirradiated samples of the cladding material ZIRLO® have been subjected to hydrogen charging and a thermo-mechanical treatment for radial hydride reorientation. Sample preparation, testing procedures, and analysis results are presented. A numerical model has been established and an elastic-plastic material model was derived from as-received RCT samples by inverse finite element analyses. Cohesive zone modelling has been implemented to reproduce sudden load drops during RCT.
The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561.
Spent nuclear fuel which is generated in the operation of nuclear reactors needs to be safely managed following its removal from the reactor core. On-site power reactor storage pools were designed on the assumption that after a short period of time spent nuclear fuel would be removed for reprocessing and disposal or further storage elsewhere. The amount of highly radioactive spent fuel that needs to be stored over longer periods of time is growing and additional storage capacity is required. One of the widely used options for additional storage capacity is the use of casks for dry storage of spent fuel. Among various existing dry storage concepts, several Member States are utilizing a concept of dual purpose casks (DPCs). This publication provides practical advice on the structure and contents of a DPC integrated safety case with reference to existing IAEA requirements relevant to the licensing and use of transport and storage casks for spent fuel.
Outcomes of Three Large-Scale Fire Reference Tests Conducted in Propane Gas Fire Test Facility
(2020)
Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated.
At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions.
In Germany, spent nuclear fuel and vitrified high active waste is stored in dual purpose casks (DPC) at interim storage facilities. In order to ensure the transportability of the DPC to a final repository in future, the maintenance of the package design approval is realized. Therefore, the assessment of possible ageing effects during interim storage is necessary to ensure an evaluation of the transportability. The lecture presents BAM's current ageing evaluation concept in the field of trasnport law.
The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The specified transport condition imply high loading on the lids and the bolt connections of the package. The response of the lid systems on these load conditions is generally investigated by drop tests or numerically. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connection under loadings typical for drop tests.
Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated.