Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe

Filtern

Autor*in

  • Lugovtsova, Yevgeniya (25)
  • Prager, Jens (12)
  • Bulling, Jannis (6)
  • Boller, C. (2)
  • Bach, M. (1)
  • Boller, Christian (1)
  • Bulletti, A. (1)
  • Capineri, L. (1)
  • Franosch, Georg (1)
  • Giannelli, P. (1)
+ weitere

Erscheinungsjahr

  • 2021 (1)
  • 2020 (3)
  • 2019 (10)
  • 2018 (8)
  • 2017 (3)

Dokumenttyp

  • Vortrag (13)
  • Beitrag zu einem Tagungsband (10)
  • Zeitschriftenartikel (2)

Sprache

  • Englisch (17)
  • Deutsch (8)

Referierte Publikation

  • nein (23)
  • ja (2)

Schlagworte

  • Lamb waves (8)
  • Structural Health Monitoring (8)
  • Wasserstoffspeicher (6)
  • Hydrogen storage (5)
  • Pressure tanks (5)
  • Composites (4)
  • Geführte Ultraschallwellen (4)
  • Natural gas (4)
  • Automobilindustrie (3)
  • Composite materials (3)
+ weitere

Organisationseinheit der BAM

  • 8 Zerstörungsfreie Prüfung (25)
  • 8.4 Akustische und elektromagnetische Verfahren (25)

25 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor*in
  • Autor*in
Structural health monitoring of composite pressure vessels using guided ultrasonic waves (2017)
Lugovtsova, Yevgeniya ; Prager, Jens
Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels.
Structural health monitoring of composite pressure vessels using guided ultrasonic waves (2017)
Lugovtsova, Yevgeniya
Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels.
Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate (2018)
Lugovtsova, Yevgeniya ; Prager, Jens
Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM).
Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate (2018)
Lugovtsova, Yevgeniya
Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM).
Efficient modelling of guided ultrasonic waves using the Scaled Boundary FEM towards SHM of composite pressure vessels (2018)
Lugovtsova, Yevgeniya ; Bulling, Jannis ; Prager, Jens ; Boller, C.
The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that shows promising results in modelling of guided ultrasonic waves. Efficiency and low computational cost of the method are achieved by a discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allows appropriate wave types (modes) to be identified and to analyse their interaction with different defects. Results obtained are used to develop a structural health monitoring system for composite pressure vessels used in automotive and aerospace industries.
Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern (2017)
Lugovtsova, Yevgeniya
Composite-Druckbehälter werden für Speicherung und Transport von Gasen unter hohem Druck verwendet. Durch die gewichtssparende Struktur, die aus einem dünnwandigem Metallgefäß und Faserverbundwerkstoff-Ummantelung besteht, sind solche Behälter insbesondere für die Automobilindustrie interessant, z.B. als Wasserstoffspeicher. Die Druckprüfung ist ein konventioneller Test, um die Integrität von Metalldruckbehältern zu bewerten. Im Falle des Composite-Druckbehälters könne eine solche Prüfung jedoch den Faserverbundwerkstoff überbeanspruchen und somit die verbleibende Lebensdauer der getesteten Komponente verringern. Infolgedessen, es ist notwendig, die Verfahren zur zerstörungsfreie Prüfung und möglicherweise zur Zustandsüberwachung von Composite-Druckbehältern zu entwickeln. Unser Vorgehen verwendet geführte Ultraschallwellen und hat das Potenzial, kritische Schäden wie Risse im Metall, Faserbrüche und Matrixrisse in Faserverbundwerkstoff zu detektieren. In diesem Beitrag wurde die Finite Elemente Methode benutzt, um die multimodale, geführte Wellenausbreitung in einer Metall-Faserverbundwerkstoffstruktur zu analysieren. Dadurch wurden die geeigneten Wellenmoden identifiziert und deren Wechselwirkung mit verschiedenen Fehlertypen analysiert. Diese Kenntnisse sollen für die Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern angewendet werden.
Analyse geführter Wellenausbreitung in einem MehrschichtVerbund: Simulation mit SBFEM (2018)
Lugovtsova, Yevgeniya
Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die vielversprechende Ergebnisse bei der Modellierung geführter Ultraschallwellen zeigt. Effizienz und niedriger Rechenaufwand der Methode werden durch Diskretisierung des Randes der Rechendomäne erreicht, während für die Domäne selbst die analytische Lösung verwendet wird. Mittels der SBFEM können verschiedene Arten von Fehlern können modelliert werden, z. Risse, Poren, Delamination, Korrosion, die in eine Struktur aus anisotropen und isotropen Materialien integriert sind. In diesem Beitrag wird das SBFEM verwendet, um die Ausbreitung von geführten Wellen in einer Struktur zu analysieren, die aus einem isotropen Metall besteht, das an anisotropes Kohlefaserverstärktes Material gebunden ist. Das Verfahren ermöglicht die Identifizierung geeigneter Wellentypen (Modi) und die Analyse ihrer Interaktion mit verschiedenen Defekten. Die erzielten Ergebnisse werden zur Entwicklung eines Zustandsüberwachungssystems für Composite-Druckbehälter verwendet, die in der Automobil- und Luftfahrtindustrie benutzt werden.
Bestimmung von Materialparametern aus dem dispersiven Verhalten geführter Wellen mittels neuronaler Netze (2020)
Lauschkin, Maik ; Bulling, Jannis ; Lugovtsova, Yevgeniya ; Wasmer, P. ; Prager, Jens
Damit eine Simulationsrechnung, beispielsweise mit einer FEM-Software, eine ausreichend hohe Genauigkeit erreicht, muss vorausgesetzt werden, dass die Modellparameter eine sehr hohe Güte aufweisen. Die genaue Kenntnis der Materialparameter ist dabei von besonderer Bedeutung. Um diese Parameter bestimmen zu können, müssen die verwendeten Werkstoffe messtechnisch charakterisiert werden. Neben anderen Ansätzen sind dafür akustische Verfahren im Ultraschallbereich geeignet. Für dünnwandige und plattenförmige Materialien können aus den sich ausbreitenden geführten Wellen messtechnisch Dispersionskurven bestimmt und aus diesen die Materialparameter abgeleitet werden. Da für die Signalverarbeitung und für Optimierungsaufgaben aktuell zunehmend Machine Learning Tools zum Einsatz kommen, stellt sich die Frage, ob diese Werkzeuge auch für die Ermittlung der Materialparameter aus den gemessenen Dispersionskurven eingesetzt werden können. In der vorgestellten Untersuchung soll ein Convolutional Neural Network aufgestellt werden, welches aus Dispersionsbildern Muster extrahiert und aus diesen eine Schätzung für die Materialparameter ermittelt. Um die Machbarkeit dieses Ansatzes zu prüfen, werden zunächst nur isotrope Materialien betrachtet. Für das Netz werden mit der Scaled-Boundary-Finite-Element-Methode synthetische Daten für das Trainieren und Validieren generiert. Zusätzlich werden die Hyperparameter des neuronalen Netzes variiert, um ein optimales Model für die Schätzung zu finden. Anschließend kann das Netz mit experimentellen Daten getestet und das Ergebnis hinsichtlich der Genauigkeit bewertet werden.
Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter (2018)
Lugovtsova, Yevgeniya ; Bulling, Jannis ; Krome, Fabian ; Prager, Jens
Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet.
Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter (2018)
Lugovtsova, Yevgeniya
Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks