Filtern
Dokumenttyp
- Zeitschriftenartikel (7)
- Beitrag zu einem Tagungsband (2)
- Vortrag (2)
Schlagworte
- Microplastics (4)
- Chemometrics (2)
- PLS-DA (2)
- Soil (2)
- Sorption (2)
- Analysis and identification (1)
- BTEX (1)
- Boehmite (1)
- Cationic photocuring (1)
- Cellular uptake (1)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (11) (entfernen)
Microplastic in Environmental Samples: Quantitative Determination and Metrological Traceability
(2015)
Due to the increasing presence of microplastic particles (MP) in the Environment and the unknown risks arising from them, there is an urgent need for analytical methods that allow for an efficient identification and quantification of microplastics (MP), i.e. particles < 5 mm, in environmental samples. So far, mostly timeconsuming (micro) infrared or micro-Raman spectroscopic methods are applied. Here an faster alternative Approach is presented based on a Raman processspectrometer with fiber-optical probes in combination with multivariate data analysis.
Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach.
With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.
A first pilot study on the sorption of environmental pollutants on various microplastic materials
(2017)
With the drastic increase in plastic production, the input of plastic particles into the environment has become a recognised problem.
Xenobiotics are able to sorb to polymer materials, and this process is further enhanced where they Encounter microplastics (plastic fragments <5 mm). In this work we studied the sorption of metformin, a type-2 diabetes drug, and difenoconazole, a fungicide, onto the virgin polymer materials polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, PP was cryo-milled and PA was treated with acid to investigate the influence of an increase in surface area and chemical modification. The material properties were also studied by dynamic scanning calorimetry (DSC), gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR). Sorption experiments were performed on the basis of a full factorial design examining the effect of agitation, pH value, and salinity. Experimental results showed that difenoconazole sorbs readily to all microplastics, whereas the more polar analyte metformin did not show any affinity to the materials used. For difenoconazole the governing factor in all cases is agitation, while both pH and salinity exhibited only a slight influence. The modification of polymers leads to enhanced sorption, indicating that an increase in surface area (cryo-milled PP) or inner volume (acid-treated PA) strongly favours adsorption. Moreover, long-term experiments demonstrated that the time until equilibrium is reached depends strongly on the particle size.
Die Präsenz von Mikroplastik in aquatischen Ökosystemen ist ein globales Problem und steht zunehmend im Fokus der Öffentlichkeit. In mehreren Studien konnten Anreicherungen hydrophober, organischer Schadstoffe an MP nachgewiesen werden. Der Einfluss des Alterungszustandes der MP-Partikel auf das Sorptionsverhalten von hydrophoben organischen Substanzen ist nicht hinreichend geklärt.
Ziel der vorliegenden Arbeit war die Untersuchung des Sorptionsverhaltens von Schadstoffen mit Bedeutung für limnische Gewässer an künstlich gealterten Partikeln relevanter Polymere. Das Modell verwendete die Aromaten Benzol, Toluol, Ethylbenzol und Xylol (BTEX) sowie Etherverbindungen. Diese Substanzen sind oder waren Bestandteile in unterschiedlichen Kraftstoffen und finden sich daher in vielen aquatischen Ökosystemen weltweit. Als Sorbentien kamen teilkristallines Polypropylen (PP) und amorphes Polystyrol (PS) in Form von Industriepellets zum Einsatz. Die Pellets wurden jeweils sowohl unbehandelt als auch mittels UV-Bestrahlung künstlich gealtert verwendet und mikroskopisch sowie mittels XPS, FTIR und DSC charakterisiert. Die Alterung führte bei PS zu einer verringerten Sorptionskapazität, während bei PP keine Veränderung im Sorptionsverhalten beobachtet wurde.
In recent years, an increasing trend towards investigating and monitoring the contamination of the environment by microplastics (MP) (plastic pieces < 5 mm) has been observed worldwide. Nonetheless, a reliable methodology that would facilitate and automate the monitoring of MP is still lacking. With the goal of selecting practical and standardized methods, and considering the challenges in microplastics detection, we present here a critical evaluation of two vibrational spectroscopies, Raman and Fourier transform infrared (FTIR) spectroscopy, and two extraction methods: thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) and liquid extraction with subsequent size exclusion chromatography (SEC) using a soil with known contents of PE, PP, PS and PET as reference material. The obtained results were compared in terms of measurement time, technique handling, detection limits and requirements for sample preparation. The results showed that in designing and selecting the right methodology, the scientific question that determines what needs to be understood is significant, and should be considered carefully prior to analysis. Depending on whether the object of interest is quantification of the MP particles in the sample, or merely a quick estimate of sample contamination with plastics, the appropriate method must be selected. To obtain overall information about MP in environmental samples, the combination of several parallel approaches should be considered.
The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method.
Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy.
Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks.
Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers.
Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer.
In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles.