### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Zeitschriftenartikel (38) (entfernen)

#### Sprache

- Englisch (38) (entfernen)

#### Schlagworte

- Ground vibration (8)
- Railway track (4)
- Track-soil interaction (4)
- Vehicle-track interaction (4)
- Force transfer (3)
- Layered soil (3)
- Wavenumber integrals (3)
- Field tests (2)
- Finite-element boundary-element method (2)
- Railway (2)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (17)
- 7.2 Ingenieurbau (17)

The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks
(2008)

The dynamic response of the railway track is strongly influenced by the underlying soil. For a soft soil and very high train speeds or for a very soft soil and regular train speeds, the train speed can be close to the speed of elastic waves in the soil. This paper presents a detailed study of the so-called moving-load effect, i.e. an amplification of the dynamic response due to the load movement, for the tracks on soft soil. The analysis is carried out by evaluating the related integrals in the wavenumber domain. The influence of the load speed is quantified for a large set of parameters, showing that the effect on the soil vibration is reduced with increase of the frequency, track width and inverse wave velocity. Therefore, the moving-load effect associated with vibratory train loads is negligible whereas the amplification associated with the moving dead weight of the train can be significant. The strong moving-load effect on a perfectly homogeneous soil, however, can be strongly diminished by a layered or randomly varying soil situation. This theoretical result is affirmed by measurements at a test site in Germany where the trains run on a very soft soil at a near-critical speed. The results for soft soils are compared with experimental and theoretical results for a stiff soil. It is found that the influence of the stiffness of the soil is much stronger than the moving-load effect. This holds for the soil vibration as well as for the track vibration which both show a minor dependence on the load speed but a considerable dependence on the soil stiffness in theory and experiment.
Railway tracks can include soft isolation elements such as rail pads, sleeper shoes and ballast mats. For these types of isolation elements and normal soil conditions, the influence of the load speed is usually negligible. There is only one isolation measure for which the moving load may be effective: a track which is constructed as a heavy massspring system. The resonance of this track system is shifted to lower frequencies and amplitudes for increasing train speed. A critical train speed can be reached if the massspring system has a marginal bending stiffness along the track.

The aim of this contribution is a practice-oriented prediction of environmental building vibrations. A Green's functions method for layered soils is used to build the dynamic stiffness matrix of the soil area that is covered by the foundation. A simple building model is proposed by adding a building mass to the dynamic stiffness of the soil. The vertical soil-building transfer functions with building-soil resonances are calculated and compared with a number of measurements of technically induced vibrations of residential buildings. In a parametrical study, realistic foundation geometries are modeled and the influence of incompressible soil, deep stiff soil layering, soft top layers, and increasing soil stiffness with depth is analyzed. All these special soil models reduce the resonant frequency compared to a standard homogeneous soil. A physically motivated model of a naturally sedimented soil has a stiffness increasing with the square root of the depth and yields a foundation stiffness that decreases with foundation area considerably stronger than the relatively insensitive homogeneous soil. This soil model is suited for the Berlin measuring sites and reproduces satisfactorily the experimental results.

A method is presented which allows to calculate the wave-field in a homogeneous or layered soil in case of a dynamic interior load. The wave propagation along the surface, the distribution of the response over the depth, the horizontal propagation at different depths and the vertical downward propagation are shown and compared with the simpler surface solution of the half-space and the interior solution of the full-space. The complete wave-field (Green's function) is applied to the dynamic behaviour of piles and pile groups by use of a boundary element formulation. The stiffness, damping and – typically for piles – mass of different groups of piles are presented. Different group effects occur for lines, circles, grids, parallels and crosses of piles, which can be regarded as oscillations around average values. Moreover, the piles and pile groups behave almost like a damper for most of the frequencies. A building on a pile group that is excited by ground vibration due to surface or interior loads shows a reduction of the wave-field due to kinematic and inertial soil–building interaction effects. The results presented lead to simplified descriptions of the wave-field due to interior loads and of the soil–pile–building interaction which can be used for the prediction of technically induced vibration.

The attenuation of the amplitudes with distance of technically induced surface wave fields is analyzed in theory and experiments. Experimental results of technically induced ground vibration are presented and collected from literature, which show a power-low attenuation A ~ r–q of amplitudes A with distance r and exponents q > 0.5 higher than for elastic surface waves. Additional attenuation effects are analyzed theoretically. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as A ~ exp(–kr), but for a broadband excitation, the sum of the exponential laws yields a power law with a higher exponent. Some more effects are discussed, for example the dispersion of the Rayleigh wave due to the layering of the soil, which yields a stronger attenuation A ~ r–q–dq, including an additional exponent of dq = 0.5 in case of an impulsive loading.