### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (4) (entfernen)

#### Schlagworte

- Railway track (4) (entfernen)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (2)
- 7.2 Ingenieurbau (2)

The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage.

The dynamics of un-isolated and isolated ballast tracks have been analysed by multi-beam models for the track and by a layered half-space model for the soil. The solution is calculated in frequency-wavenumber domain and transformed back to space domain by a wavenumber integral. This is a faster method compared to other detailed track-soil interaction methods and almost as fast as the widely used Winkler-soil method, especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a clear influence on the high-frequency behaviour whereas the soil is dominating the low-frequency behaviour of the track. A layering of the soil may cause a moderate track-soil resonance whereas more pronounced vehicle-track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these resonant frequencies, a reduction of the excitation forces follows as a consequence. The track deformation along the track has been analysed for the most interesting track systems. The track deformation is strongly influenced by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the track-soil waves change considerably around the resonant frequencies. The track deformation due to complete trains have been calculated for different continuous and Winkler soils and compared with the measurement of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil model.

The dynamics of slab tracks and floating slab tracks are analyzed by multibeam models for the track and by integration in the wave-number domain for the soil, which is modeled as a layered half-space. Frequency-dependent compliances and force transfers are calculated for a great variety of track and soil parameters. The distribution of the load and the displacements along the track is investigated as well as the wave propagation perpendicular to the track and the ground vibration amplitudes. The floating slab track has a dominating plate-mat resonance and a strong high-frequency reduction. A track-soil resonance can also be recognized for an unisolated slab track in the case of layered soils. Generally, there is a strong damping of the track by the soil. The reduction effect of the slab mat is mainly owing to the elimination of this strong damping. The continuous soil yields slightly different rules for the displacements and force densities than those of a Winkler support. The total force transfer from the rail to the soil is the best criterion to judge the effectiveness of a floating slab track in reducing the ground vibration at some distance from the railway line. The total force transfer is easier to calculate than the double Fourier integrals of the ground vibration amplitudes, namely in the far field, and it has the best correlation with the reduction of the ground vibration.

Ballast mats are an efficient measure to reduce the vibrations near railway lines. The vehicle-track system gets a low eigenfrequency due to the insertion of an elastic ballast mat under the ballast. For frequencies higher than this low vehicle-track eigenfrequency, the forces, which are generating the vibration of the soil, are considerably reduced. In this contribution, a combined finite-element boundary-matrix method is used to calculate a number of completely three-dimensional track models with and without ballast mats. The influence of the important parameters such as the stiffness of the ballast mat, the unsprung vehicle mass, the mass of the track, and the stiffness of the subsoil is investigated. The numerical results are presented as the transfer functions of the total force that is acting on the soil and generating the vibration of the environment. The effectiveness of ballast mats is achieved by division of two of these force functions. The general tendencies for this insertion loss are discussed and a comparison with measurements is given. To come to an improved practical tool for the design of ballast-mat tracks, the finite-element method results are approximated by a simple two-dimensional model of which the solution is given explicitly.