### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Zeitschriftenartikel (51) (entfernen)

#### Sprache

- Englisch (37)
- Deutsch (12)
- Französisch (1)
- Spanisch (1)

#### Schlagworte

- Ground vibration (8)
- Layered soil (4)
- Railway track (4)
- Track-soil interaction (4)
- Vehicle-track interaction (4)
- Force transfer (3)
- Field tests (2)
- Finite-element boundary-element method (2)
- Railway (2)
- Rayleigh wave (2)
- Slab track (2)
- Track vibration (2)
- Wave propagation (2)
- Wavenumber integrals (2)
- Acoplamiento Método de los Elementos de Contorno-Método de los Elementos Finitos (1)
- Amplitude-distance law (1)
- Axle box measurements (1)
- Axle-load spectra (1)
- Ballast mat (1)
- Base isolation (1)
- Beam dynamics (1)
- Beam-soil interaction (1)
- Bending waves (1)
- Blasting charge (1)
- Boundary Element Method-Finite Element Method coupling (1)
- Boundary element method (1)
- Continuously inhomogeneous soils (1)
- Drop height (1)
- Dynamic pile and pile group stiffness (1)
- Dynamic soil-structure interaction (1)
- Elastic length (1)
- Elastic track elements (1)
- Emission (1)
- Environmental vibrations (1)
- Excitation forces (1)
- Experimental verification (1)
- Explosion (1)
- Filter effect of the soil (1)
- Finite element method (1)
- Finite-element method (1)
- Flexible plate (1)
- Floating slab track (1)
- Foundations (1)
- Frequency-wavenumber method (1)
- Geometric trackbed irregularities (1)
- High-speed trains (1)
- Insertion loss (1)
- Interacción dinámica suelo-estructura (1)
- Interaction (1)
- Interior load (1)
- Irregularities (1)
- Irrégularités et forces roue-rail (1)
- Kinematic and inertial soil-pile-building (1)
- Layered soils (1)
- Mass drop (1)
- Material damping (1)
- Measured railway vibrations (1)
- Measurements (1)
- Mitigation (1)
- Monitoring (1)
- Moving load (1)
- Multi-beam model (1)
- Multi-beam-on-support model (1)
- Ondes du sol multicouche (1)
- Parametric excitation (1)
- Pile bending stiffness (1)
- Pile foundation (1)
- Plate-soil interaction (1)
- Prediction (1)
- Predictions (1)
- Rail pad (1)
- Rail roughness (1)
- Railway forces (1)
- Railway measurement campaign (1)
- Railway track vibration (1)
- Reduction (1)
- Resonance (1)
- Resonancia en edificaciones (1)
- Resonant response (1)
- Scattering damping (1)
- Sleeper pad (1)
- Soil stiffness (1)
- Soil transfer function (1)
- Soil-building interaction (1)
- Stiffness (1)
- Target stiffness (1)
- Track (1)
- Track alignment (1)
- Track damage (1)
- Track deformation (1)
- Track dynamic (1)
- Track-soil and vehicle-track resonances (1)
- Train induced ground vibration (1)
- Train passage (1)
- Train speed (1)
- Varying track stiffness (1)
- Vibration (1)
- Vibration isolation (1)
- Vibration reduction (1)
- Wave attenuation (1)
- Wave excitation (1)
- Wavenumber method (1)
- Wheel out-of-roundness (1)
- Wheel-rail irregularities and forces (1)
- Wind energy tower (1)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (18)
- 7.2 Ingenieurbau (18)

The attenuation of the amplitudes with distance of technically induced surface wave fields is analyzed in theory and experiments. Experimental results of technically induced ground vibration are presented and collected from literature, which show a power-low attenuation A ~ r–q of amplitudes A with distance r and exponents q > 0.5 higher than for elastic surface waves. Additional attenuation effects are analyzed theoretically. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as A ~ exp(–kr), but for a broadband excitation, the sum of the exponential laws yields a power law with a higher exponent. Some more effects are discussed, for example the dispersion of the Rayleigh wave due to the layering of the soil, which yields a stronger attenuation A ~ r–q–dq, including an additional exponent of dq = 0.5 in case of an impulsive loading.

Transfer admittance spectra of technically induced surface wave fields are analyzed in theory and experiments. Theoretical admittance spectra of layered soils are obtained by integration in wavenumber domain and compared with experimental admittances due to hammer or vibrator excitation. The admittance spectra are strongly influenced by the layering and damping of the soil. Deep stiff-soil layers yield a low-frequency cutoff, whereas a strong damping yields a high-frequency cutoff. A sharp cutoff in a narrow frequency band, which is measured at some sites, can be explained by a damping that increases with frequency, such as viscous material or scattering damping.

The dynamics of un-isolated and isolated ballast tracks have been analysed by multi-beam models for the track and by a layered half-space model for the soil. The solution is calculated in frequency-wavenumber domain and transformed back to space domain by a wavenumber integral. This is a faster method compared to other detailed track-soil interaction methods and almost as fast as the widely used Winkler-soil method, especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a clear influence on the high-frequency behaviour whereas the soil is dominating the low-frequency behaviour of the track. A layering of the soil may cause a moderate track-soil resonance whereas more pronounced vehicle-track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these resonant frequencies, a reduction of the excitation forces follows as a consequence. The track deformation along the track has been analysed for the most interesting track systems. The track deformation is strongly influenced by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the track-soil waves change considerably around the resonant frequencies. The track deformation due to complete trains have been calculated for different continuous and Winkler soils and compared with the measurement of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil model.

Train-induced ground vibration can be excited by wheel and track irregularities and by two kinds of irregularities of the soil, by geometric irregularities or by the spatially varying soil stiffness. For both types of irregularities, the effective track irregularity on top of the track is calculated in wavenumber domain and with wavenumber integrals. For a general multi-beam track model, the wavenumber integrals are solved numerically. The irregularities of the soil are filtered by the track when transferred from the bottom to the top of the track. The high-wavenumber irregularities are strongly reduced due to the bending stiffness of the track and the compliance of the support. In addition, soft track elements reduce directly the stiffness variation of the support. Therefore, the mitigation effect of elastic track elements for these excitation components seems to be important. For under-sleeper pads and slab tracks, calculation and measurements are presented including additional excitation components and the dynamic vehicle–track interaction, and the relevance of the excitation mechanisms is discussed based on the dynamic forces which are acting on the ground. Due to the restricted amplitudes, the parametric excitation by the stiffness variation seems to be less important than the geometric irregularities. The calculations yield the correct trends of the measurements and many details of the measured ballast, slab, and under-sleeper-pad tracks.

The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method.

Train passages induce forces on the track, train-induced vibrations propagate through the soil and excite neighbouring buildings. The emission, which is the first part of the prediction of vibrations near railway lines, is presented by focusing on the dynamic axle loads. The calculation of the axle loads is based on the vehicle-track-soil interaction. This interaction calculus utilises the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil system. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the ballast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. All necessary transfer functions for the prediction of axle-load spectra are presented as general formula and as specific graphs for differing vehicle and track parameters. The prediction method is applied to a ballast track and a slab track and compared with corresponding axle-box measurements. Moreover, ground vibration measurements at numerous sites are exploited for the axle-load spectra and the validation of the prediction method. All theoretical and experimental results confirm that the dynamic axle-load spectra have an approximate value of 1 kN per third of octave and increase with train speed, track stiffness and around the vehicle-track resonance.

The aim of this contribution is a practice-oriented prediction of environmental building vibrations. A Green's functions method for layered soils is used to build the dynamic stiffness matrix of the soil area that is covered by the foundation. A simple building model is proposed by adding a building mass to the dynamic stiffness of the soil. The vertical soil-building transfer functions with building-soil resonances are calculated and compared with a number of measurements of technically induced vibrations of residential buildings. In a parametrical study, realistic foundation geometries are modeled and the influence of incompressible soil, deep stiff soil layering, soft top layers, and increasing soil stiffness with depth is analyzed. All these special soil models reduce the resonant frequency compared to a standard homogeneous soil. A physically motivated model of a naturally sedimented soil has a stiffness increasing with the square root of the depth and yields a foundation stiffness that decreases with foundation area considerably stronger than the relatively insensitive homogeneous soil. This soil model is suited for the Berlin measuring sites and reproduces satisfactorily the experimental results.

Ballast mats are an efficient measure to reduce the vibrations near railway lines. The vehicle-track system gets a low eigenfrequency due to the insertion of an elastic ballast mat under the ballast. For frequencies higher than this low vehicle-track eigenfrequency, the forces, which are generating the vibration of the soil, are considerably reduced. In this contribution, a combined finite-element boundary-matrix method is used to calculate a number of completely three-dimensional track models with and without ballast mats. The influence of the important parameters such as the stiffness of the ballast mat, the unsprung vehicle mass, the mass of the track, and the stiffness of the subsoil is investigated. The numerical results are presented as the transfer functions of the total force that is acting on the soil and generating the vibration of the environment. The effectiveness of ballast mats is achieved by division of two of these force functions. The general tendencies for this insertion loss are discussed and a comparison with measurements is given. To come to an improved practical tool for the design of ballast-mat tracks, the finite-element method results are approximated by a simple two-dimensional model of which the solution is given explicitly.