### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (16)
- Beitrag zu einem Tagungsband (16)
- Vortrag (13)
- Beitrag zu einem Sammelband (2)
- Buchkapitel (1)

#### Sprache

- Englisch (48) (entfernen)

#### Schlagworte

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (48) (entfernen)

The soilstructure interaction of elastic plates on homogeneous or layered soils excited by horizontally propagating waves is analysed. Large plates are modelled by a combined finite-element boundary-element method (FEBEM), whereas the response of infinitely long plates is calculated by a numerical integration in the frequencywavenumber domain. The finite-element boundary-element method yields the complete soilplate transfer function of frequency and distance whereas the frequencywavenumber solution of the infinitely long plate can serve as an approximation for long distances on a finitely long plate. The soilplate transfer function starts to decrease strongly at the coincidence frequency, where the bending stiffness equals the plate inertia. A strong decrease follows at mid frequencies and a strong reduction of less than 0.1 of the ground vibration is reached at high frequencies. Rules for the characteristic frequencies are derived from the numerical results clearly indicating the strongest influence of the soil stiffness and the weaker influence of the bending stiffness of the plate. The influence of the mass, length and width of the plate are shown to be limited in case of realistic parameters, but it should be noted that the reduction effects are less effective for layered soils and for nearer observation points.

Vibration of normal apartment, office and production buildings, which are excited by technically induced ground vibrations are considered. Many wavelengths of the Rayleigh waves of the soil fit into the foundation dimensions. The related high discretization effort can nowadays be realized with detailed soil-structure interaction method. The combined finite-element boundary-element method is used here as a detatiled method. Simplified method can be used with less computation time, but these methods must be calibrated by exact results. One simplification is to extent the structure to infinity and to solve the problem by wavenumber domain methods. Another simplification is the use of a Winkler soil instead of the continuous soil. Usually, the Winkler parameters are not only soil parameters but depend also on the rigid or flexible foundation structure. Substructure methods use commercial FEM software for the building part. The contribution will show some detailed and some simplified results on large structural elements such as foundation plates, walls, storey plates on columns as well as results on complete buildings. The reduction of the ground vibration by stiff elements and the amplification due to floor or building resonances are discussed which are the most important phenomena of the soil-building interaction.

A variety of isolation measures exists to reduce the vibration in the neighbourhood of railway lines. They can be roughly classified as elastic or stiffening systems. There are the following elastic elements, rail pads or resilient fixation systems between rail and sleeper, under sleeper pads or sleeper shoes under the sleepers, and ballast mats under the ballast. Stiffening systems (plates) are used as slab tracks, floating slab tracks, or mass-spring systems. In the EU project “Railway induced vibration abatement solutions (RIVAS)”, elastic under sleeper pads have been investigated. The dynamic behaviour of the track and the surrounding soil has been calculated by the combined finite-element boundary-element method in a systematic parameter study. It has been shown that the mitigation effect can be improved by soft under sleeper pads or by heavy sleepers. Consequently, such track elements (soft under sleeper pads and heavy sleepers) have been thoroughly investigated in laboratory tests to establish the static and dynamic parameters as well as their serviceability. Finally, field tests at and near railway tracks with and without under sleeper pads have been performed. To determine the reduction effect of the isolated track, the ground vibrations excited by trains or artificial sources have been measured. The soil properties at the different sites have also been measured so that the comparison of the isolated and un-isolated track can take into account possible differences of the soil parameters. The contribution shows how the different (numerical, laboratory and field) methods and results can be combined to achieve an improved mitigation solution with soft under sleeper pads and heavy sleepers for ballasted and slab tracks.

The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method.

The ground vibrations, which are generated by trains on different tracks, have been calculated by finite-element boundary-element models. The ballasted track is modelled in detail by the finite element method. The infinite soil is modelled by the boundary element method as a homogeneous or layered half-space. The track-soil system is coupled to a simple rigid mass model of the vehicle so that the vehicle-track interaction is completely included. Transfer functions are calculated in frequency domain without and with vehicle-track interaction, the compliance of the track and the mobilities of the soil at different distances from the track. Finally, the ratios between the ground vibration amplitudes with and without mitigation measures are calculated to quantify the effectiveness of the mitigation measures.
Tracks with under-sleeper pads have been investigated in a wide parameter study for the RIVAS project. The main parameters that influence the reduction of ground vibration are the stiffness of the under-sleeper pad, the mass and the width of the sleeper. The softest sleeper pad yields the best reduction of the ground vibration. The influence of the sleeper mass is not so strong, as the characteristic frequency is ruled by the mass of the sleeper and the mass of the wheelset as well.

The maintenance of the transport infrastructures and their further development are going to remain focal points for investment and research in Germany in future. According to the latest development forecasts made by both the federal government and Deutsche Bahn, even if rail´s percentage share of the market were to remain unchanged, growth of around 50% would be expected in the next ten years, especially in freight traffic. This growth is necessitating considerable development both in the technical design of the tracks and in the abatement of the noise and vibration caused by railway traffic.