### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Zeitschriftenartikel (39) (entfernen)

#### Sprache

- Englisch (39) (entfernen)

#### Schlagworte

- Ground vibration (8)
- Railway track (4)
- Track-soil interaction (4)
- Vehicle-track interaction (4)
- Force transfer (3)
- Layered soil (3)
- Slab track (3)
- Wavenumber integrals (3)
- Field tests (2)
- Finite-element boundary-element method (2)
- Railway (2)
- Rayleigh wave (2)
- Track vibration (2)
- Amplitude-distance law (1)
- Axle box measurements (1)
- Axle-load spectra (1)
- Ballast mat (1)
- Base isolation (1)
- Beam dynamics (1)
- Beam-soil interaction (1)
- Bending waves (1)
- Blasting charge (1)
- Boundary element method (1)
- Components of excitation (1)
- Continuous soil (1)
- Continuously inhomogeneous soils (1)
- Drop height (1)
- Dynamic pile and pile group stiffness (1)
- Elastic length (1)
- Elastic track elements (1)
- Emission (1)
- Environmental vibrations (1)
- Excitation forces (1)
- Experimental verification (1)
- Explosion (1)
- Filter effect of the soil (1)
- Finite element method (1)
- Finite-element method (1)
- Flexible plate (1)
- Floating slab track (1)
- Foundations (1)
- Frequency-wavenumber method (1)
- Geometric trackbed irregularities (1)
- High-speed trains (1)
- Insertion loss (1)
- Interaction (1)
- Interior load (1)
- Irregularities (1)
- Kinematic and inertial soil-pile-building (1)
- Layered soils (1)
- Mass drop (1)
- Material damping (1)
- Measured railway vibrations (1)
- Measurement campaigns (1)
- Measurements (1)
- Mitigation (1)
- Monitoring (1)
- Moving load (1)
- Multi-beam model (1)
- Multi-beam-on-support model (1)
- Parametric excitation (1)
- Pile bending stiffness (1)
- Pile foundation (1)
- Plate-soil interaction (1)
- Prediction (1)
- Predictions (1)
- Rail pad (1)
- Rail roughness (1)
- Railway forces (1)
- Railway measurement campaign (1)
- Railway track vibration (1)
- Reduction (1)
- Resonance (1)
- Scattering damping (1)
- Sleeper pad (1)
- Soil forces (1)
- Soil stiffness (1)
- Soil transfer function (1)
- Soil-building interaction (1)
- Stiffness (1)
- Target stiffness (1)
- Track (1)
- Track alignment (1)
- Track damage (1)
- Track deformation (1)
- Track displacements (1)
- Track dynamic (1)
- Track filter (1)
- Track-soil and vehicle-track resonances (1)
- Train induced ground vibration (1)
- Train passage (1)
- Train speed (1)
- Train-induced ground vibration (1)
- Varying track stiffness (1)
- Vehicle-track-soil interaction (1)
- Vehicle–track interaction (1)
- Vibration (1)
- Vibration isolation (1)
- Vibration reduction (1)
- Wave attenuation (1)
- Wave excitation (1)
- Wave propagation (1)
- Wavenumber domain (1)
- Wavenumber method (1)
- Wheel out-of-roundness (1)
- Wheelset accelerations (1)
- Wind energy tower (1)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (17)
- 7.2 Ingenieurbau (17)

Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results.
The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces.

Transfer admittance spectra of technically induced surface wave fields are analyzed in theory and experiments. Theoretical admittance spectra of layered soils are obtained by integration in wavenumber domain and compared with experimental admittances due to hammer or vibrator excitation. The admittance spectra are strongly influenced by the layering and damping of the soil. Deep stiff-soil layers yield a low-frequency cutoff, whereas a strong damping yields a high-frequency cutoff. A sharp cutoff in a narrow frequency band, which is measured at some sites, can be explained by a damping that increases with frequency, such as viscous material or scattering damping.

The vibrations of soil and foundations are demonstrated for different types of loading. Train-induced ground vibrations are studied in a measurement campaign where a test train has run with regularly varied speeds. The measured train-induced soil vibration at 2 to 100 m distance from the track is compared with the wave propagation due to hammer excitation and with the theoretical wave field. The strong influence of the soil and the train speed on the amplitudes and frequencies of the vibration has been analysed for passages of the locomotive and the carriages. - The generation of ground vibration by strong explosions has been studied on a large testing area with sandy soil. The propagating waves were measured in a regular grid of measuring points in 10 to 1000 m. Therefore, the dominance of certain waves at certain distances and the changes of compressional waves and Rayleigh waves could clearly be observed. The results are compared with impulse hammer measurements in the range of 5 to 50 m. - A drop test facility has been built on the testing area of the Federal Institute of Materials Research and Testing (BAM). Heavy masses (containers) of up to 200 t can be dropped from 10 m height on a big reinforced concrete foundation. The foundation was instrumented by accelerometers, strain gauges and pressure cells to give information about the loading condition and by geophones to measure the vibration of the surrounding soil and building. Both excitation processes, the release of the mass and the impact, produce high vibration amplitudes. On a smaller drop foundation, the influence of the drop height and the target stiffness has been studied more systematically.

Ground vibrations created by running high-speed trains at speeds between 100 and 320 km/h are calculated in detail using transfer functions to model the effects of the moving loads. These transfer functions for layered soils are obtained by integration in the wavenumber domain. The train-induced vibrations in a soil that is considered to consist of single layers of two slightly different soils are analysed for different excitations: for their spectra, attenuation laws and amplitude-speed relations. An important mid-frequency component is shifted through the cut-on region of the layered soil with an increase in the train speed. The cut-on frequency divides the response of the layered soil into a low-frequency low-amplitude range and a high-frequency high-amplitude range. This leads to completely different train speed dependencies for the two soil layers with strongly increasing amplitudes around the cut-on frequency and almost constant amplitudes beyond this frequency. All calculated results closely agree with ground vibration measurements at two corresponding sites, especially if the mid-frequency component is calculated by axle impulses.

This article presents an integrated model for the computation of vehicletrack interaction and the ground vibrations of passing trains. A combined finite element and boundary element method is used to calculate the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle. The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These loads serve as input for the calculation of ground vibration near railway lines in the time and frequency domains.
The theoretical methods and results have been proven by experiments in several respects and at several instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very good quality of the vehicle and of the newly built track so that the deterministic parts of the excitationthe static load and the sleeper-passing componentcould clearly be identified, the first being of minor importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil at three different track situations were performed where we could verify the different parts of the stochastic excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at high frequencies whereas the irregularities of the track are more important at lower frequencies. The comparison of the theory and the measurements also points to the phenomena of the vehicletrack resonance and the scattering of the quasi-static axle impulses by randomly varying soil.

Ballast mats are an efficient measure to reduce the vibrations near railway lines. The vehicle-track system gets a low eigenfrequency due to the insertion of an elastic ballast mat under the ballast. For frequencies higher than this low vehicle-track eigenfrequency, the forces, which are generating the vibration of the soil, are considerably reduced. In this contribution, a combined finite-element boundary-matrix method is used to calculate a number of completely three-dimensional track models with and without ballast mats. The influence of the important parameters such as the stiffness of the ballast mat, the unsprung vehicle mass, the mass of the track, and the stiffness of the subsoil is investigated. The numerical results are presented as the transfer functions of the total force that is acting on the soil and generating the vibration of the environment. The effectiveness of ballast mats is achieved by division of two of these force functions. The general tendencies for this insertion loss are discussed and a comparison with measurements is given. To come to an improved practical tool for the design of ballast-mat tracks, the finite-element method results are approximated by a simple two-dimensional model of which the solution is given explicitly.

The reduction of train-induced ground vibration by elastic elements such as rail pads and sleeper pads has been analyzed by a combined finite-element boundary-element method. The dynamic compliance of the track, the transfer function of the total force on the ground and the ground vibration ratios have been calculated for a variety of isolated and un-isolated track systems. It has been found that the soil force transfer, which describes the excitation force of the soil, is an appropriate quantity to predict the reduction of the ground vibration and the effectiveness of isolated tracks. All force transfer functions of isolated tracks display a vehicletrack resonance where the wheelset on the compliant track is excited by wheel and track irregularities. At higher frequencies, considerable reductions of the amplitudes are observed as the benefit of the resilient element. The influence of the stiffness of the rail or sleeper pads, the ballast and the soil, and the mass of the sleeper and the wheelset on the resonance frequency and the reduction has been investigated. Sleeper pads are advantageous due to the higher mass that is elastically supported compared to the rail-pad track system. The combination of elastic rail and sleeper pads has been found to be disadvantageous, as the second resonance occurs in the frequency range of intended reduction.

Train-induced ground vibrations are generated by static and dynamic axle loads which can be calculated by vehicle-track-soil models and the vehicle and track irregularities. A fast prediction method has been developed which uses approximate transfer functions of layered soils. In the present contribution, this prediction method is used for the inverse calculation of the axle-load spectra from the measured ground vibration. The layered soils of some measuring sites show very differing ground vibration spectra in the amplitude range of 0.0001–1.0 mm/s as a consequence of the soft layer and stiff half-space, differing layer frequencies, as well as the far- and near-field measuring points. The back-calculation, however, yields axle-load spectra within a single order of magnitude around 1 kN. Axle-box measurements confirm the amplitude level of the axle loads. This standard axle-load spectrum can be used for a basic prediction at a new site. The separation of train and site-specific components allows a better evaluation of railway vibrations, for example, of different trains and different tracks. By eliminating the effects of differing soil characteristics, an important mid-frequency component has been found which lies between 8 and 32 Hz depending on the train speed. The origin of this dominant mid-frequency component is discussed using advanced prediction methods like moving constant loads, scattered axle impulses and axle-sequence spectra.

Construction work, such as pile driving and soil compaction, or road and railway traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for nearby inhabitants. A simplified building model has been created for these situations, which includes the effects of soil-structure interaction, the low-frequency amplification along the height of the building as well as the high-frequency reduction and the floor resonances. The model consists of one wall for all supporting structures (walls and columns) and one floor for each storey. The effect of different floor resonance frequencies is included in a stochastic procedure. The soil is modelled by a spring and a viscous damper, and the free-field amplitudes of the soil are applied under this soil element.
The model can be calculated by transfer matrices or in a continuous wave-type version where an analytical solution can be evaluated numerically. The building response in the high-frequency (acoustic) region is calculated as mean values over wider frequency bands. The approach to an infinite building model can be found for these high frequencies and the corresponding soil-structure transfer can be described by the ratio of impedances at foundation level.
The rules for choosing the parameters to obtain realistic results are derived from complex calculations for example, for the stiffness and damping of building foundations and many measurements as for the damping of floor resonances. The influences on the floor resonance from the soil (damping) and the supporting structure (detuning) are important. Some more effects will be discussed by the simplified and detailed models and by measurements to establish a good understanding of ground-induced building vibrations.

Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses - the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle-track-soil interaction - have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle-track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave.