Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (26)
- Vortrag (25)
- Beitrag zu einem Tagungsband (18)
- Forschungsdatensatz (5)
- Posterpräsentation (4)
- Preprint (1)
Schlagworte
- Concrete (8)
- Multiscale (6)
- Fatigue (4)
- Spectral element method (4)
- Damage (3)
- Isogeometric analysis (3)
- Model calibration (3)
- Model updating (3)
- Proper generalized decomposition (3)
- Stress wave propagation (3)
Organisationseinheit der BAM
- 7 Bauwerkssicherheit (55)
- 7.7 Modellierung und Simulation (50)
- 5 Werkstofftechnik (5)
- 7.0 Abteilungsleitung und andere (5)
- 5.2 Metallische Hochtemperaturwerkstoffe (4)
- 5.5 Materialmodellierung (4)
- 8 Zerstörungsfreie Prüfung (3)
- 7.1 Baustoffe (2)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (2)
- 1 Analytische Chemie; Referenzmaterialien (1)
Paper des Monats
- ja (3)
Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their tructural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management.
Die sprunghaft zunehmende Wichtigkeit von FAIR- und Open-Data für die Qualitätssicherung, aber auch für die Nachnutzbarkeit von Daten und den Erkenntnisfortschritt führt zu enormem Flandlungsbedarf in Forschung und Entwicklung. Damit verbunden laufen derzeit vielfältige, ambitionierte Aktionen, z. B. bezüglich der Erstellung von Ontologien und Wissensgraphen. Das Knowhow entwickelt sich rasant, die Ansätze zur Implementation entstehen in verschiedenen Fachwelten bzw. mit
unterschiedlichen Zielsetzungen parallel, so dass recht heterogene Herangehensweisen resultieren.
Diese Veröffentlichung fokussiert auf Arbeiten, die derzeit als möglichst ganzheitlicher Ansatz für Materialdaten im Rahmen der Digitalisierungsinitiative „Plattform MaterialDigital" vorangetrieben werden. Die Autoren bearbeiten baustoffbezogene Aspekte im Verbundprojekt „LeBeDigital - Lebenszyklus von Beton". Zielsetzung ist die digitale Beschreibung des Materialverhaltens von Beton über den kompletten Herstellungsprozess eines Fertigteils mit einer Integration von Daten und Modellen innerhalb eines Workflows zur probabilistischen Material- und Prozessoptimierung.
Es wird über die Vorgehensweise und die dabei gewonnenen Erfahrungen berichtet, nicht ohne den Blick auf die oft unterschätzte Komplexität der Thematik zu lenken.
In recent years, the use of simulation-based digital twins for monitoring and assessment of complex mechanical systems has greatly expanded. Their potential to increase the information obtained from limited data makes them an invaluable tool for a broad range of real-world applications. Nonetheless, there usually exists a discrepancy between the predicted response and the measurements of the system once built. One of the main contributors to this difference in addition to miscalibrated model parameters is the model error. Quantifying this socalled model bias (as well as proper values for the model parameters) is critical for the reliable performance of digital twins. Model bias identification is ultimately an inverse problem where information from measurements is used to update the original model. Bayesian formulations can tackle this task. Including the model bias as a parameter to be inferred enables the use of a Bayesian framework to obtain a probability distribution that represents the uncertainty between the measurements and the model. Simultaneously, this procedure can be combined with a classic parameter updating scheme to account for the trainable parameters in the original model.
This study evaluates the effectiveness of different model bias identification approaches based on Bayesian inference methods. This includes more classical approaches such as direct parameter estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-FEM or orthogonal Gaussian Processes. Their potential use in digital twins, generalization capabilities, and computational cost is extensively analyzed.
Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression
(2015)
Conventional approaches to model fatigue failure are based on a characterization of the lifetime as a function of the loading amplitude. The Wöhler diagram in combination with a linear damage accumulation assumption predicts the lifetime for different loading regimes. Using this phenomenological approach, the evolution of damage and inelastic strains and a redistribution of stresses cannot be modeled. The gradual degration of the material is assumed to not alter the stress state. Using the Palmgren–Miner rule for damage accumulation, order effects resulting from the non-linear response are generally neglected.
In this work, a constitutive model for concrete using continuum damage mechanics is developed. The model includes rate-dependent effects and realistically reproduces gradual performance degradation of normal strength concrete under compressive static, creep and cyclic loading in a unified framework. The damage evolution is driven by inelastic deformations and captures strain rate effects observed experimentally. Implementation details are discussed. Finally, the model is validated by comparing simulation and experimental data for creep, fatigue and triaxial compression.
The problem of polydisperse sphere packings is applied to concrete mesoscale geometries in finite sized specimens. Realistic sphere diameter distributions are derived from concrete grading curves. An event-driven molecular dynamics simulation using growing particles is introduced. Compared to the widely used random sequential addition algorithm, it reaches denser aggregate packings and saves computation time at high volume fractions.
A minimal distance between particles strongly influences the maximum aggregate content. It is essential to obtain undistorted elements when meshing the geometry for finite element simulations. The algorithm maximizes this value and produces meshable concrete mesostructures with more than 70% aggregate content.
Numerical simulation of ultrasonic wave propagation using higher order methods in space and time
(2015)
The paper discusses the efficient simulation of ultrasonic wave propagation.
It is demonstrated that a combination of higher methods in space and time leads to a significant performance boost. Higher order spectral elements are used for the spatial
discretization. A comparison with standard finite elements shows the advantages when using explicit time integration schemes. For the temporal discretization, an efficient explicit fourth order Nyström method is presented. Its computational efficiency for wave propagation problems is compared to a second order Velocity Verlet integration.
Numerical simulation of ultrasonic wave propagation using higher order methods in space and time
(2015)
The paper discusses the efficient simulation of ultrasonic wave propagation.
It is demonstrated that a combination of higher methods in space and time leads to a significant performance boost. Higher order spectral elements are used for the spatial
discretization. A comparison with standard finite elements shows the advantages when using explicit time integration schemes. For the temporal discretization, an efficient explicit fourth order Nyström method is presented. Its computational efficiency for wave propagation problems is compared to a second order Velocity Verlet integration.