Filtern
Dokumenttyp
- Vortrag (5)
- Zeitschriftenartikel (3)
- Beitrag zu einem Tagungsband (3)
- Posterpräsentation (3)
- Forschungsdatensatz (2)
- Forschungsbericht (1)
Schlagworte
Organisationseinheit der BAM
Im Vorhaben SNELLIUS wurden in enger Zusammenarbeit der BAM mit den Firmen Accurion und SENTECH Instruments aufbauend auf der Norm DIN 50989-1 „Ellipsometrie - Teil 1: Grundlagen; Ellipsometry – Part 1: Principles“ insgesamt fünf Normenentwürfe erarbeitet, die fünf Modell-basierten Anwendungsfällen der Ellipsometrie entsprechen. Unter Berücksichtigung des neuartigen Modell-basierten Normungskonzepts wurde in den Normenentwürfen erstmals eine GUM- und DIN EN ISO/IEC 17025:2018 konforme Bestimmung bzw. Abschätzung der Messunsicherheit umgesetzt. Dies erforderte neben der textlichen Erstellung auch umfangreiche experimentelle Arbeiten bei den Firmen, Vergleichsversuche und komplementäre Modell- und Datenevaluierungen, da sowohl die verwendete ellipsometrische Hardware (unterschiedliche ellipsometrische Funktionsprinzipien) als auch die ellipsometrische Software (Modell-Randbedingungen, Fitalgorithmus) firmenspezifisch zum Teil sehr unterschiedlich sind. Hierbei mussten in einem Konsensprozess Lösungen gefunden werden, die die beiden deutschen Ellipsometer-Anbieter Accurion (Imaging-Ellipsometrie) und SENTECH Instruments (Mapping Ellipsometrie) gleichermaßen akzeptieren konnten und die zudem einen Transfer auf die Internationale Ebene (ISO Norm) ermöglichen, also vom Grundsatz her auch auf weitere Ellipsometerhersteller wie (J. A. Woollam Co., USA; SEMILAB, Ungarn; HORIBA, Japan) mit wieder anderen ellipsometrischen Funktionsprinzipien, Hard- und Softwarelösungen anwendbar sind. Die weitgehende Unabhängigkeit von ellipsometrischen Funktionsprinzipien, Hard- und Softwarelösungen wurde dadurch erreicht, dass normativ festgelegt wurde, dass die ellipsometrischen Größen PSI und DELTA im Sinne von DIN ENISO/IEC 17025 als Rohdaten fungieren.
Ellipsometry is a powerful tool, which allows the investigation of material properties over a broad spectral range. Over the course of several years, the ellipsometry lab at BAM has become an accredited testing lab according to ISO/IEC 17025 laying bare the need of better methods for accuracy and traceability. Despite its wide range of application in both research and development as well as industry, there have been no generally accepted standards dealing with model validation and measurement uncertainties.
Based on the first German standard DIN 50989 – 1: 2018 Ellipsometry - Part 1: Principles (currently international standard ISO 23131: 2021) and under consideration of GUM [1] a series of standards for ellipsometry was developed. The entire 6-part series covers several model-based application cases. This standards series avoids having narrow and material specific application cases but instead classifies applications of ellipsometry according to the sample complexity. The concept of ellipsometric transfer quantities (Ψ and Δ or alternatively the elements of transfer matrices) is implemented in the series. For each application case a model-based validation strategy was developed. Thus, the standards are applicable to all materials, instruments and measuring principles.
The uniform structure concept of the series facilitates its practical applicability for users. The standards include the model-based GUM-compliant determination/estimation of the measurement uncertainties. In addition, the appendices of the documents contain numerous measurement and simulation examples as well as recommendations for measuring practice.
In this contribution we present the application cases and basic structure of the standards developed in collaboration with Accurion GmbH and SENTECH Instruments GmbH in the project SNELLIUS.
Ellipsometry has become a powerful measurement tool in semiconductor industry since the sixties of the last century.
Early standardization activities focused exclusively on SiO2/Si (ASTM F 576-01, SEMI 3624). The first generic standard dealing with ellipsometry is DIN 50989-1:2018 Ellipsometry – Part 1: Principles. Standardization is a prerequisite for accreditation according to DIN EN ISO/IEC 17025 and the evaluation of uncertainty budgets.
Ellipsometry enables the investigation of material properties over a broad spectral range. As a fast and non-destructive method, it is widely used in industry for quality assurance. Despite the wide application of ellipsometry and its high industrial relevance there are some material-specific standards and there have been no generally accepted standards dealing with model validation and measurement uncertainties. The first German standard DIN50989-1: 2018 Ellipsometry – Part1: Principles (currently international standard ISO 23131: 2021) marks the beginning of a 6-part standard series for ellipsometry, which was developed under consideration of GUM.
Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers
(2022)
Recent developments in power electronics require the use of new wide bandgap compound semiconductors. Silicon carbide (SiC) is one of the most promising materials for power electronics due to its outstanding properties and commercial availability. Some types of defects in the SiC substrates or homoepitaxial SiC layers can affect the performance of electronic devices in a serious manner or make its operation even impossible. Optical methods such as imaging ellipsometry (IE) and white light interference microscopy (WLIM) were applied for fast and non-contact investigation of defects in the epitaxially grown 12 µm 4H-SiC layers on 4H- SiC substrates.
Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers
(2022)
Recent developments in power electronics require the use of new wide bandgap compound semiconductor. We demonstrate the use of the ellipsometry and white light interference microscopy to detect defects in epitaxially grown SiC layers on SiC substrates. Such hybrid optical metrology methods can be used to better understand the mechanism of the development of the defects as well as their effects on the material´s optoelectronic properties.
Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H–SiC homoepitaxial layers on 4H–SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control.
Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations.
Ellipsometry as optical metrology method for analysis of reference materials for nanoelectronics
(2024)
Electrical properties of materials at the nanoscale can be characterized using scanning microwave microscopes (SMM) and conductive atomic force microscopes (C AFM). However, the measurement results are difficult to compare since different setups and different reference standards are used. The development of new “out-of-lab” reference standards can contribute to the traceability and reliability of these scanning probe microscopy methods (SPM) and facilitate their broader industrial application.
In this study, we discuss the capability of optical methods such as ellipsometry for the characterization of existing and the development of new reference calibration samples for scanning microwave microscopy. Ellipsometry is a fast and non-destructive method, which enables very accurate determination of the layer thickness and the dielectric functions of the materials. Imaging ellipsometry is suitable for spatially resolved measurements when analyzing thin layers in microstructured samples.
We show how the electrical resistivity of indium tin oxide (ITO) layers in newly designed resistive calibration samples can be obtained from spectroscopic ellipsometric measurements. The extension of the measurement range into the mid-infrared region was necessary when analyzing ITO layers with low conductivity. This parameter was obtained by fitting a Drude function describing the absorption of the free carriers. The impact of the coating process conditions on the layer properties is discussed.
Imaging ellipsometry was applied for the characterisation of thin ITO and SiO2 layers in microstructured resistive and capacitance calibration kits. The uncertainties of determined layer thicknesses were specified according to standardized practice guides used in ellipsometry. We show how statistical fingerprint analysis of the measured ellipsometric transfer quantities can be used to validate the quality of potential reference materials for nano-electronics and to monitor the processing of structured samples.
Ellipsometrical characterization of poly-dopamine layers considered for technical applications
(2024)
Although the organic molecule dopamine (3,4-dihydroxyphenethylamine) is commonly known as the “hormone of happiness”, thin films of poly-dopamine also have interesting technical properties. When produced by dip coating, the self-organizing layers grow in a reproducible thickness of single or multiple molecule monolayers of a few nanometer thickness only. In this work, we introduce a method of determining the layer thickness of poly-dopamine on mirrors for astronomical X-ray telescopes. This work is based on spectroscopic ellipsometry measurements and involves the development of an optical model for the poly-dopamine layers including the dielectric function. Thereby the complex refractive index of the produced layers was determined, covering the range from the ultraviolet to the near infrared spectral region. These measurement results and the corresponding technical challenges are presented in this contribution. Furthermore, an outlook to potential technical applications of this interesting material is given and poly-dopamine layers will make scientist and engineers hopefully happy as an innovative and fascinating technical solution for the future.