Filtern
Dokumenttyp
- Vortrag (22)
- Zeitschriftenartikel (19)
- Posterpräsentation (6)
- Forschungsdatensatz (2)
- Beitrag zu einem Tagungsband (1)
- Sonstiges (1)
Schlagworte
- SAXS (14)
- Small angle scattering (11)
- Small-angle scattering (11)
- X-ray scattering (6)
- Software (5)
- Small-angle X-ray scattering (4)
- Analysis (3)
- Methodology (3)
- Nanocomposite (3)
- Nanostructure (3)
Organisationseinheit der BAM
- 6 Materialchemie (51)
- 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (50)
- 6.6 Physik und chemische Analytik der Polymere (8)
- 1 Analytische Chemie; Referenzmaterialien (2)
- 7 Bauwerkssicherheit (2)
- 7.5 Technische Eigenschaften von Polymerwerkstoffen (2)
- 1.2 Biophotonik (1)
- 1.9 Chemische und optische Sensorik (1)
- 5 Werkstofftechnik (1)
- 5.4 Keramische Prozesstechnik und Biowerkstoffe (1)
A user-friendly open-source Monte Carlo regression package (McSAS) is presented, which structures the analysis of small-angle scattering (SAS) using uncorrelated shape-similar particles (or scattering contributions). The underdetermined problem is solvable, provided that sufficient external information is available. Based on this, the user picks a scatterer contribution model (or 'shape') from a comprehensive library and defines variation intervals of its model parameters. A multitude of scattering contribution models are included, including prolate and oblate nanoparticles, core-shell objects, several polymer models, and a model for densely packed spheres. Most importantly, the form-free Monte Carlo nature of McSAS means it is not necessary to provide further restrictions on the mathematical form of the parameter distribution; without prior knowledge, McSAS is able to extract complex multimodal or odd-shaped parameter distributions from SAS data. When provided with data on an absolute scale with reasonable uncertainty estimates, the software outputs model parameter distributions in absolute volume fraction, and provides the modes of the distribution (e.g. mean, variance etc.). In addition to facilitating the evaluation of (series of) SAS curves, McSAS also helps in assessing the significance of the results through the addition of uncertainty estimates to the result. The McSAS software can be integrated as part of an automated reduction and analysis procedure in laboratory instruments or at synchrotron beamlines.
The Future of SAXS
(2015)
Excelling in brevity but lacking in applicability, the 2011 EU nanomaterial definition has become a source of anguish for scientists and industry alike. Repeated pleas and discussions with our own envoy have demonstrated the strength of their resolve: this definition is unlikely to change. Manufacturers of many materials (cosmetics, pigments, foodstuffs, etc.) will have to characterise and label all their products accordingly, a task still impossible for lack of a clear metrological approach towards this goal. Therefore, the onus has fallen on the scientists to come up with a practicable measurement technique allowing inexpensive classification covering large swathes of the material landscape. Small-angle X-ray Scattering (SAXS) probes the size range in question, and can - with due care - deliver a bulk-averaged volume-weighted size distribution. Like any other real-world measurement method, however, it is not (and can never be) a universal solution. This presentation will clarify the SAXS technique, provide several application examples for nanomaterial characterisation, and will detail the limitations and pitfalls that accompany its abilities. At the end of this presentation, you will have the information to judge whether the technique is amenable to your materials or not.
Protein folding, unfolding and misfolding have become critically important to a range of health and industry applications. Increasing high temperature and high pressure are used to control and speed up reactions. A number of studies have indicated that these parameters can have a large effecton protein structure and function. Here we describe the additive effects of these parameters on the small angle scattering behaviour of ribonuclease A. We find that alternate unfolded structures can be obtained with combined high pressure and temperature treatment of the protein.
Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.
This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods.
This poster deals with improvements and characteriztion of small-angle scattering limitations, by looking at the trifecta of Data collection and uncertainty propagation, data analysis methodologies, and real-world tests. It is found that - with appropriate care and instrumentation - accuracies of 1% on mean nanomaterial sizes, and 10% on the size distribution width as well as the volume fraction can be achieved.