### Filtern

#### Dokumenttyp

- Posterpräsentation (2)
- Zeitschriftenartikel (1)
- Beitrag zu einem Tagungsband (1)
- Vortrag (1)

#### Schlagworte

- Least-squares adjustment (5) (entfernen)

#### Organisationseinheit der BAM

Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear
equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle.

The determination of material parameters from displacement field measurement is being examined for linear elastic solid. A frequently used approach to compute material constants can be found in many studies. Even though they presented the approach in many different variations, but in the end they are essentially based on the same algorithm: Parameters are iteratively tuned until the computed results are in accordance with the measurements. The main drawback of this approach is that mainly commercial software is used that hinders us to investigate its inner evaluation process. This leads to the question, how the results from this commercial software can be trusted. On the contrary to these debatable approaches, we present a method that inverts the procedure of finite element method by using the most general model for a least-squares adjustment – the GAUSS-HELMERT Model.

The integration of finite element method (FEM) into the least-squares adjustment presented in is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the Hooke's law, the material parameters determination from measurements is being examined.