Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (89)
- Beitrag zu einem Tagungsband (49)
- Zeitschriftenartikel (30)
- Posterpräsentation (9)
- Beitrag zu einem Sammelband (5)
- Forschungsbericht (5)
- Buchkapitel (1)
- Dissertation (1)
- Sonstiges (1)
Schlagworte
- Tensile properties (15)
- BAM-Liste (14)
- Dangerous goods (14)
- Sealing materials (12)
- Biofuels (11)
- Compatibility (11)
- Biodiesel (10)
- BAM-List (9)
- Polyethylene grades (9)
- Shore hardness (9)
Organisationseinheit der BAM
- 3 Gefahrgutumschließungen (66)
- 3.2 Gefahrguttanks und Unfallmechanik (66)
- 7 Bauwerkssicherheit (12)
- 7.6 Korrosion und Korrosionsschutz (12)
- 1 Analytische Chemie; Referenzmaterialien (8)
- 1.4 Prozessanalytik (8)
- 2 Chemische Sicherheitstechnik (6)
- 2.1 Explosionsschutz Gase, Stäube (6)
- 2.4 Auswirkungsbetrachtungen bei Stoff- und Energiefreisetzungen (6)
- 8 Zerstörungsfreie Prüfung (6)
Resistance to stress cracking by wetting solution is one of the selected properties together with the corresponding test method FNCT and tolerances for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods.
The environmental stress crack resistance determined by Full Notch Creep Test (FNCT) represents the impacts from the stacking tests at 40 °C performed with standard liquid wetting solution (without pre-storage) and with normal butyl acetate saturated wetting solution (pre-storage with normal butyl acetate).
Environmental stress crack resistance determined with FNCT for the polyethylene grades was related to the times to failure of different jerrican samples made of these grades in stacking tests with 5% wetting solution and a n-butyl acetate saturated wetting solution (pre-storage with n-butyl acetate) at 40 °C. The FNCT is suitable for comparison of polyethylene grades in relation to environmental stress crack resistance independent of their use as drum, IBC or jerrican material. The stiffness of polyethylene grades should be taken into account to the comparison as jerricans are not only chemically but also mechanically stressed.
The notched impact strength at -30 °C is one of the selected properties, together with the corresponding test method and tolerances, for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods.
The marginal drop heights determined with the drop test at -18 °C after pre-storage of the test samples with 55 % nitric acid at 40 °C only partly related to the notched impact strength at -30 °C. The Charpy method is only suitable for classifying the grade in relation to toughness behavior and using this classification for comparison with other grades. Notched impact strength can provide a qualitative indication if the test samples fail under shock forces.
Conditioning the design types with 55 % nitric acid for 21 days at 40 °C causes an increase in the marginal drop heights of the design types in drop tests at -18 °C when compared with design types without pre-storage. Post-crosslinking of the grades increases stiffness because of the acidic influence.
The notched impact strength at -30 °C is one of the selected properties, together with the corresponding test method and tolerances, for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk containers (IBCs) for the transport of dangerous goods.
The marginal drop heights determined with the drop test at -18 °C after pre-storage of the test samples with 55 % nitric acid at 40 °C only partly related to the notched impact strength at -30 °C. The Charpy method is only suitable for classifying the grade in relation to toughness behavior and using this classification for comparison with other grades. Notched impact strength can provide a qualitative indication if the test samples fail under shock forces.
Conditioning the design types with 55 % nitric acid for 21 days at 40 °C causes an increase in the marginal drop heights of the design types in drop tests at -18 °C when compared with design types without pre-storage. Post-crosslinking of the grades increases stiffness because of the acidic influence.
For the characterization and the comparison of polyethylene grades used for the manufacture of packaging and intermediate bulk container, the following parameters are required: melt flow rate (MFR), density (D), low-temperature notched impact strength, full notch creep test (FNCT) and increase of MFR by molecular degradation (resistance to oxidative degradation). The relationship between these material parameters determined on the basis of specimens prepared from compression-moulded sheets of polyethylene grades and the test behaviour of packaging has been investigated in several tests. The environmental stress crack resistance determined by FNCT represents the impacts from the stacking tests performed with standard liquid wetting solution (without pre-storage) and with normal butyl-acetate-saturated wetting solution (pre-storage with normal butyl acetate). Resistance to molecular degradation by the determination of MFR increase is related to the impacts in drop tests and stacking tests performed after pre-storage for 21 days with standard liquid 55% nitric acid at 40°C. The low-temperature impact strength is directly comparable with the impacts in drop tests at -18°C performed without pre-storage and after pre-storage with 55% nitric acid. A partly good relationship was found between the test results and the material parameters. Conditioning the design types with 55% nitric acid for 21 days causes an increase in the marginal drop heights of the design types in drop tests at -18°C when compared with design types without pre-storage. Post-cross-linking of the grades increases stiffness because of the acidic influence.
Resistance to stress cracking by wetting solution is one of the selected properties together with the corresponding test method FNCT and tolerances for a comparison of polyethylene grades of one design type in the procedural rule on suitability proof for alternative plastic resins used for packagings and intermediate bulk Containers (IBCs) for the transport of dangerous goods.
The environmental stress crack resistance determined by Full Notch Creep Test (FNCT) represents the impacts from the stacking tests at 40 °C performed with Standard liquid wetting solution (without pre-storage) and with normal butyl acetate saturated wetting solution (pre-storage with normal butyl acetate). Environmental stress crack resistance determined with FNCT for the polyethylene grades was related to the times to failure of different jerrican samples made of these grades in stacking tests with 5 % wetting solution and a n-butyl acetate saturated wetting solution (pre-storage with n-butyl acetate) at 40 °C. The FNCT is suitable for comparison of polyethylene grades in relation to environmental stress crack resistance independent of their use as drum, IBC or jerrican material. The stiffness of polyethylene grades should be taken into account to the comparison as jerricans are not only chemically but also mechanically stressed.
Use of Higher Alloyed Metallic Materials and Duplex Steels for Transport Tanks of Dangerous Goods
(2011)
Alloy 59 (NiCr23Mo16Al) with a lot of chromium, molybdenum and nickel possesses excellent resistance not only to reducing but also oxidizing chemicals. Both the Nickel alloy 59 and the superaustenitic steel alloy 31 have already been used as shell materials for tank vehicles or tank containers. Use of these alloys allows the transport of a signifi-cantly more wider variety of chemicals and, especially, waste mixtures than the use of common aus-tenitic steels. Another advantage is the extension of test intervals of for transport tanks. In Germany the 'BAM-List – Requirements for Tanks for the Transport of Dangerous Goods' is the basis for substance-related prototype approvals for tank containers designed for the carriage of dangerous goods issued by the Federal Institute for Materials Research and Testing (BAM). Com-patibility evaluations of selected metallic material groups as well as polymeric gasket and lining materials under the influence of approximately 7000 dangerous goods and water-polluting sub-stances are published in the BAM-List. Alloy 59 belongs to the group of metallic materials in the BAM-List. Due to the large number of dangerous goods in the BAM-List BAM, IKS Dresden and ThyssenKrupp VDM performed a comprehensive corrosion test programme with welded specimens of the nickel alloy 59 and the superaustenitic steels alloy 926 and alloy 31 in the period 2002 - 2010. Especially In particular alloy 59 and alloy 31 were exposed to a large number of corrosive sub-stances such as various mixtures of both nitric acid/sulphuric acid and nitric acid/phosphoric acid at 55 °C. Other corrosive test substances were different organic and inorganic halogenides, peroxyace-tic acid and molten substances. In the case of molten chemicals such as monochloroacetic acid the test temperature was increased to more than 100 °C. The test results presented in this paper are al-ready included in the 10th edition of the BAM-List and, therefore, available to the customer.
Use of higher-alloyed metallic materials and duplex steels for transport tanks of dangerous goods
(2011)
Compatibility evaluations of selected metallic materials under the influence of dangerous goods are published in the BAM-List - Requirements for Tanks for the Transport of Dangerous Goods” as basis for substance-related prototype approvals for tank Containers designed for the carriage of dangerous goods.
There is a request of the tank manufacturing industry and transportation Companies to incorporate additional materials into the BAM-List, especially corrosionresistant materials because of the large number of corrosive dangerous goods.
One solution to solve corrosion Problems is to line the tank with a polymeric material, an alternative solution is the application of high-alloyed stainless steels and nickel-based alloys as there are alloy 926 (1.4529), alloy 31 (1.4562) and alloy 59 (2.4605).
But there is an interest to use cost-efficient steels with high strength values and concomitant adequate corrosion resistance such as duplex Steel 1.4362 too. This Steel grade was originally developed as a substitute for the austenitic grades 1.4404 and 1.4571. Due to the lower content of the alloy elements nickel and molybdenum this duplex steel is a cost-efficient alternative to molybdenum containing austenite.
Due to the limited number of corrosion test results with welded test samples of these high-alloyed materials and the duplex steel under the influence of corrosive dangerous goods a comprehensive test Programme was performed with these materials in Cooperation with ThyssenKrupp VDM and Deutsche Edelstahlwerke GmbH.
It can be concluded from the test results that the "superaustenitic steels” 1.4529 and 1.4562 as well as the nickel-based alloy 2.4605 are a really good alternative as tank materials for the transport of dangerous goods in comparison to the lining of the tanks. Due to the reduced alloying content, in particular Nickel (3.7 %) and Molybdenum (0.15 %), a lower resistance of the duplex steel 1.4362 compared to the austenitic CrNiMo-steels was observed in acidic media. The duplex Steel is an alternative to the austenitic steels, especially in alkaline media. The test results are included in the current 10th edition of the BAM-List and therefore available for the costumer.