Filtern
Schlagworte
- MALDI TOF MS (2) (entfernen)
Organisationseinheit der BAM
- 1.3 Strukturanalytik (2) (entfernen)
Five new catalysts are prepared from dibutyltin oxide and catechol (HCa),
2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano
catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful
results. When benzyl alcohol is used as an initiator, linear chains having
benzyl ester end groups are formed in a slow polymerization process. In
contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields
cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain
conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained.
At 160 °C and short reaction times even-numbered cycles are slightly
prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly
formed. These results definitely prove that a ring-expansion mechanism
is operating.
A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2<Bu2SnCl2<<Ph2SnCl2. In this series also, the most reactive catalyst yields cyclic polylactides, but the extent of cyclization varies with the molecular weight. The formation of cyclic polylactides is explained by ROP combined with simultaneous polycondensation involving end-to-end cyclization (ROPPOC method). ROP of meso-lactide at 80 or 60°C yields even-numbered linear chains as main products, a result supporting the ROPPOC mechanism.