Filtern
Dokumenttyp
- Zeitschriftenartikel (62)
- Vortrag (7)
- Posterpräsentation (2)
- Beitrag zu einem Sammelband (1)
- Beitrag zu einem Tagungsband (1)
Schlagworte
- MALDI-TOF MS (22)
- Cyclization (17)
- MALDI (9)
- Polylactide (9)
- Ring-opening polymerization (9)
- Polycondensation (7)
- Pollen (6)
- Catalysts (4)
- Isosorbide (4)
- Lactide (4)
- Polyester (4)
- Polylactides (4)
- Transesterification (4)
- Catalyst (3)
- Ionization (3)
- Mass spectrometry (3)
- Polyesters (3)
- Polymers (3)
- Polyurethane (3)
- SEC (3)
- Catechol (2)
- Conductive carbon tape (2)
- Crosslinking (2)
- Cyclopolymerization (2)
- Dispersity (2)
- ICP-MS (2)
- MALDI TOF MS (2)
- MALDI mass spectrometry (2)
- Multivariate statistics (2)
- Polymerization (2)
- Polystyrene (2)
- Principal component analysis (2)
- Ring-expansion polymerization (2)
- Ring-opening Polymerization (2)
- Sample pretreatment (2)
- Silver nanoparticles (2)
- TPU (2)
- 2-oxazoline (1)
- AET (1)
- Abbauverhalten (1)
- Adhesion promotion (1)
- Artificial weathering (1)
- Asymmetric flow filed-flow fractionation (1)
- Asymmetrical flow field flow fractionation (AF4) (1)
- Bewitterung (1)
- Biodegradability (1)
- Biodegradable (1)
- Blends (1)
- Blockcopolymer (1)
- Caco-2 cells (1)
- Caesium (1)
- Capillary electrophoresis (CE) (1)
- Carbon capture (1)
- Carbon fiberepoxy resin laminates (1)
- Cationic ring opening polymerization (1)
- Cationization (1)
- Classification (1)
- Climate change (1)
- Controlled radical polymerization (1)
- Copolyester (1)
- Copolymer sequence (1)
- Cyclic (1)
- Cyclics (1)
- Cyclisation (1)
- DCTB (1)
- Degradation (1)
- Dried droplet (1)
- Dynamic light scattering (1)
- ESI (1)
- Electrospray (1)
- Electrospray ionization (1)
- Electrospray ionization (ESI) (1)
- Epsilon-caprolactone (1)
- Equilibration (1)
- Europium (1)
- Feuchte (1)
- Field flow fractionation (1)
- Field-flow fractionation (1)
- Foldamers (1)
- Friction (1)
- Functionalized graphene nanoribbons (1)
- Fundamentals (1)
- Graphene monomers (1)
- Graphene nanoribbons (1)
- Graphene wires (1)
- HPLC (1)
- Hexabenzocoronene (1)
- Hierarchical cluster analysis (1)
- Humidity (1)
- Hybrid nanoparticles (1)
- Hyperbranched polyesters (1)
- Imaging (1)
- Imaging MS (1)
- In vitro digestion (1)
- Inductively coupled plasma-mass spectrometry (1)
- Inlet ionization (1)
- Ion mobility (1)
- Iron oxide nanoparticles (1)
- Irreversible polycondensation (1)
- Isophthalic acid (1)
- Isotope dilution analysis (1)
- Klassifizierung (1)
- Lactides (1)
- Laser-induced redox reactions (1)
- Layer topography (1)
- Liquid adsorption chromatography (1)
- Liquid chromatography at critical conditions (1)
- Lubricant (1)
- MALDI Imaging (1)
- MALDI Imaging MS (1)
- MALDI-TOF MS/MS (1)
- MALDI-TOF Mass Spectrometry (1)
- MALDI-TOF Massenspektrometrie (1)
- MOF (1)
- Matrices (1)
- Matrix segregation (1)
- Matrix-assisted ionization ion mobility spectrometry mass spectrometry (1)
- Matrix-assisted laser desorption/ionization (1)
- Mechanism (1)
- Mega-dalton (1)
- Metal triflates (1)
- Micro manufacturing (1)
- Microwave (1)
- Moisture (1)
- Molecular masses (1)
- Morphology (1)
- Multicyclic polymers (1)
- Multiphysics simulations (1)
- Multivariate Analyse (1)
- Multivariate Statistics (1)
- Nanoparticles (1)
- Nanoparticles separation asymetrical flow field flow fractionation (1)
- Nanoparticles with same nominal diameter (1)
- Networks (1)
- Nässe (1)
- Oligoazobenzene (1)
- Oligospiroketals (1)
- On-surface polymerization (1)
- PCA (1)
- Partial least square discriminant analysis (PLS-DA) (1)
- Phenolic acid (1)
- Photoligation (1)
- Photooxidation (1)
- Photoswitchable (1)
- Pollen grains (1)
- Pollenkörner (1)
- Poly(ethylene glycol) (1)
- Poly(lactide) (1)
- Polyaddition (1)
- Polycaprolactone (1)
- Polylaktid (1)
- Polymer (1)
- Polymer MALDI (1)
- Polymer chromatography (1)
- Polymer mass spectrometry (1)
- Polymerisation (1)
- Polysarcosine (1)
- Polyurethan (1)
- Polyurethanes (1)
- Principal component analysis (PCA) (1)
- Quantification (1)
- ROPPOC (1)
- Renewable resources (1)
- Salicylate (1)
- Sample loss (1)
- Sample preparation (1)
- Size exclusion chromatography (1)
- Size-exclusion chromatography (1)
- Small-angle X-ray scattering (1)
- Sn catalysts (1)
- Spirocyclic (1)
- Stereocomplex (1)
- Succinic acid (1)
- Sulfobetaines (1)
- Surface coating (1)
- Synthesis (1)
- Target plate material (1)
- Thermal degradation (1)
- Thin polymer layers (1)
- Tin catalysts (1)
- Tin(II)octanoate (1)
- Toxicity (1)
- Toxicology (1)
- Two-dimensional off-line coupling (1)
- UV (1)
- UV degradation (1)
- UV radiation (1)
- Universal calibration (1)
- Vacuum ionization (1)
- WMRIF (1)
- Zyklen (1)
- a2 + b3 polycondensation (1)
- cyclization (1)
- dispersity (1)
- mass spectra (1)
- mass spectrometry (1)
- polycondensation (1)
- polyesters (1)
- polyionic liquids (1)
- reversible addition fragmentation chain transfer (RAFT) polymerization (1)
- surface modification (1)
Organisationseinheit der BAM
- 1.3 Strukturanalytik (73) (entfernen)
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequencedefined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read.We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement.
Systems containing multiple photochromic units possibly display a synergistic interplay of individual switching events and hence potentially give rise to unprecedented photoresponsive behavior. Among such systems photoswitchable foldamers are attractive as the photoisomerization events are coupled to the helixcoil conformational transition. To gain comprehensive insight into the role of the number of switching units (statistics) as well as their specific location and relative orientation in the helix backbone, several series of foldamers have been synthesized and characterized. In these series of foldamers, the local environment of the photoswitchable units was precisely tuned as π,π-stacking interactions were enforced to occur between specific pairs, i.e. azobenzene–azobenzene, azobenzene–tolane, or phenylene–phenylene units. These particular arrangements are reflected not only in the stability of the helical conformation, but also affect the photoresponsive behavior, i.e. the rate of photoisomerization and extent of denaturation. Furthermore, determining the intramolecular spin–spin distance in a series of TEMPO-labeled foldamers with variable chain lengths and different spatial locations of the spin-labels deduced an independent verification of the photoinduced helix–coil transition by ESR spectroscopy. Quantitative analysis of the corresponding ESR spectra shows an excellent correlation of the extent of intramolecular spin–spin coupling and the intensity of the Cotton effect in CD spectroscopy. From all of these results an unusual relationship between the rate of photoisomerization and the extent of photoinduced denaturation could be unraveled, as they are not going hand-in-hand but compete with each other, i.e. the easier the individual switching event is, the harder it becomes to achieve a high degree of unfolding. This insight into the effect of microenvironment on the ease of individual switching events and the role of statistics on the resulting degree of the overall conformational transition is of general interest for the design of multi-switch architectures with improved photoresponse.
The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized.
Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD) and limit of quantification (LOQ) obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.
The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for separation of nanoparticles (NPs) with different surface coatings was shown. We could successfully demonstrate that, in a certain NP size range, hyphenation of both techniques significantly improved the separation of differently coated NPs. Three mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated at all. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed.
The development of a facile covalent strategy for the fabrication of organic conducting polymers (OCPs)/carbon nanotubes (CNTs) based molecular hybrid materials remains a challenge and is expected to address the detrimental intrinsic bundling issue of CNTs. In view of the pristine CNTs' ability to undergo Diels–Alder reactions with dienes, we report the synthesis of a novel poly(3-hexylthiophene) (P3HT) based organic conducting polymer (OCP) with terminal cyclopentadienyl (Cp) groups. The synthetic strategy employed is based on a combination of in situ end group functionalization via Grignard metathesis (GRIM) polymerization and a subsequent end group switching via reaction with nickelocene. Characterization data from Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDITOF MS) fully support the successful synthesis of monofunctional Cp-capped P3HT, which was found to be highly reactive toward dienophile end-capped polystyrene (PS). The Cp-capped P3HT was subsequently ligated to the surface of pristine single walled CNTs (SWCNTs). The resulting P3HT/SWCNTs molecular hybrid material was characterized using thermogravimetric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). The data from TGA, EA, and XPS were used to quantitatively deduce the grafting density. P3HT/SWCNTs prepared with Cp capped P3HT was found to contain 2 times more P3HT than the reference sample, featuring a grafting density of 0.0510 chains·nm–2 and a periodicity of 1 P3HT chain per 748 carbon atoms of the SWCNTs. HRTEM revealed individual SWCNTs wrapped with P3HT whereas in the reference sample P3HT was adsorbed on the bundles of the SWCNTs. The results presented here provide a new avenue for designing novel materials based on CNTs and OCPs.
Thin coatings of poly(acrylic acid) (PAA) and poly(hydroxyethylmethacrylate) (PHEMA) were deposited onto carbon fibers by means of the electrospray ionization (ESI) technique in ambient air. These high-molecular weight polymer layers were used as adhesion promoters in carbon fiberepoxy resin composites. Within the ESI process, the carbon fibers were completely enwrapped with polymer in the upper 10 plies of a carbon fiber roving. As identified with scanning electron microscopy also shadowed fibers in a bundle as well as backsides of fiber rovings were pinhole-free coated with polymers (electrophoretic effect'). Under the conditions used, the layers have a granular structure. Residual solvent was absent in the deposit. PAA and PHEMA films did not show any changes in composition and structure in comparison with the original polymers as analyzed by X-ray photo-electron spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Single-fiber pullout tests of coated fibers embedded in epoxy resin showed significantly increased interfacial shear strength. It is assumed that chemical bonds between carbon fiber poly(acrylic acid) and epoxy resin contribute significantly to the improved interactions.
The nucleophilic thiol–ene (thia-Michael) reaction between molecular rods bearing terminal thiols and bis-maleimides was investigated. The molecular rods have oligospiroketal (OSK) and oligospirothioketal (OSTK) backbones. Contrary to the expectations, cyclic oligomers were always obtained instead of linear rigid-rod polymers. Replacing the OS(T)K rods with a flexible chain yielded polymeric products, suggesting that the OS(T)K structure is responsible for the formation of cyclic products. The reason for the preferred formation of cyclic products is due to the presence of folded conformations, which have already been described for articulated rods.
RATIONALE
The fast and univocal identification of different species in mixtures of pollen grains is still a challenge. Apart from microscopic evaluation and Raman spectroscopy, no other techniques are available.
METHODS
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was applied to the analysis of extracts of single pollen grains and pollen mixtures. Pollen grains were fixed, treated and covered with matrix directly on the MALDI target.
RESULTS
Clearly resolved MALDI ion intensity images could be obtained enabling the identification of single pollen grains in a mixture.
CONCLUSIONS
Our results demonstrate the potential and the suitability of MALDI imaging mass spectrometry as an additional method for the identification of pollen mixtures.
Using 22 metal triflates as catalysts, ε-caprolactone is polymerized at 22 °C in bulk. Only five relatively acidic triflates prove active. Three triflates, including the neutral Sm3+, are active using water as initiator. A very low content of cyclics is found in all the experiments. With Ce3+ and Ce4+, polymerizations are performed in CH2Cl2 and in bulk at 2 °C and 22 °C. Low dispersities (down to 1.1) are obtained. At 22 °C, Ce4+ and, even better, Ce3+ also catalyze syntheses of CO2H- and CH2OH-terminated polycaprolactones, whereby higher dispersities and larger fractions of cyclics are obtained. Further polymerizations and polycondensations are catalyzed with protic acids. The results can be explained by a proton-catalyzed activated monomer mechanism.
Poly(l-lactide)s are synthesized and annealed at 120 °C and changes of the molecular weight distribution (MWD) are monitored by matrix-assited laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. For example, benzyl alcohol+SnOct2 causes equilibration of odd- and even-numbered chains and the final goal of the transesterification is the most probable distribution. The underlying intermolecular transesterification is even observed at 100 and 80 °C in the solid state. However, cyclic tin mercaptide catalysts transform the initial most probable distribution into a MWD with maxima, which display a conspicuous fine structure due to a preferential crystallization of certain ring sizes. The optimum ring sizes for the crystallization are provided by ring-ring equilibration. The gradual formation of a special morphology shifts the melting temperature to values up to 187 °C. Annealing of commercial poly(l-lactide) with a cyclic tin catalyst also yields a distribution of mass peaks with a maximum showing the characteristic fine structure.
Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.10.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene.
Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too.
l-lactide or meso-lactide are polymerized either at 120 °C where the polymerization process of l-lactide is accompanied by crystallization, or at 180 °C where poly(l-lactide) remains in the molten state. Polymerizations at 120 °C initially yield even-numbered chains (with respect to lactic acid units) having relatively low dispersity, but the fraction of odd-numbered chains increases with time and the entire molecular weight distribution changes. Traces of cyclics are only formed after 7 d. Polymerizations at 180 °C yield equilibrium of even and odd-numbered chains from the beginning, but at low monomer/initiator ratios and short reaction times (<4 h) cyclics are again not formed. They appear at longer reaction times and entail higher dispersities. The results are discussed in terms of five different transesterification mechanisms.
The purpose of this study is to shed more light on the transesterification processes in alcohol-initiated and tin(II) 2-ethylhexanoate (SnOct2)-catalyzed polymerizations of lactides at low or moderate temperatures. Ethanol-initiated polymerizations are conducted in concentrated solutions at 80 °C and a strong dependence of even/odd equilibration on the alcohol/Sn ratio. Around or above 120 °C cyclization of poly(l-lactide) via “backbiting” occurs as a third mechanism. However, poly(m-lactide) shows a higher cyclization tendency and yields cyclics even at 100 °C. Combinations of ethanol and certain cyclic dibutyltin(IV) catalysts also yield cyclic oligomers of l-lactide at 80 °C. Reaction conditions allowing for a total suppression of all transesterification reactions are not found, but even-numbered poly(m-lactide)s with a purity >95% are obtained at 70 or 60 °C.
Pollen represent one major cause for human allergic diseases. Currently the characterization and identification of pollen is time-consuming since it mainly relies on the microscopic determination of the genus-specific pollen morphology. A variety of new analytical approaches, like Raman - and fluorescence spectroscopy have been proposed in order to develop fast and reliable pollen identification. Recently matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was initially applied for the rapid investigation of such complex biological samples. Taxonomic differences and relations of single pollen grains could be identified.
Both commercially available lyophilized pollen and fresh pollen acquired from biological samples collected in parks and in the Botanical Garden Berlin in the years 2013-2015 were investigated. The samples were prepared by formic acid extraction in the gas phase and spotted with HCCA matrix. A variety of new approaches, like a newly developed MALDI target with micrometer sample spots sizes, were tested for their suitability. The obtained mass spectral data were investigated by principal component analysis (PCA).
The applicability of MALDI-TOF mass spectrometry for the classification of pollen according to their taxonomic relationships was proven. Specifically, chemical differences in the mass spectra at the levels of plant order, genus and in many cases even of species could be identified. Based on these results, further investigations have been undertaken to optimize the sample preparation for the classification of single pollen grains in mixtures of pollens. A novel MALDI-target design was developed to enhance the phenotypic information of pollens in their mass spectra. The combination of mass spectral patterns and multivariate statistics provide a powerful tool for the investigation of structural correlations within mixtures. The results can be used to improve the reconstruction of taxonomic relations of single species in various mixtures and might be useful for the development of a fast routine method to identify pollen based on mass spectrometry.