Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe

Filtern

Autor

  • Wander, Lukas (25)
  • Kern, Simon (12)
  • Maiwald, Michael (12)
  • Guhl, Svetlana (10)
  • Meyer, Klas (9)
  • Paul, Andrea (8)
  • Gräßer, Patrick (4)
  • Bornemann-Pfeiffer, Martin (3)
  • Engell, S. (3)
  • Fleischer, C. (3)
+ weitere

Erscheinungsjahr

  • 2020 (3)
  • 2019 (6)
  • 2018 (6)
  • 2017 (9)
  • 2016 (1)

Dokumenttyp

  • Beitrag zu einem Tagungsband (8)
  • Posterpräsentation (7)
  • Zeitschriftenartikel (4)
  • Vortrag (4)
  • Forschungsdatensatz (2)

Sprache

  • Englisch (18)
  • Deutsch (6)
  • Mehrsprachig (1)

Referierte Publikation

  • nein (20)
  • ja (5)

Schlagworte

  • Online NMR Spectroscopy (7)
  • CONSENS (6)
  • Microplastics (5)
  • Process Analytical Technology (4)
  • FTIR (3)
  • Industrie 4.0 (3)
  • Process Monitoring (3)
  • Process control (3)
  • Prozessanalytik (3)
  • Artificial Neural Networks (2)
+ weitere

Organisationseinheit der BAM

  • 1 Analytische Chemie; Referenzmaterialien (25)
  • 1.4 Prozessanalytik (25)
  • 5 Werkstofftechnik (3)
  • 5.3 Mechanik der Polymerwerkstoffe (3)
  • 6 Materialchemie (3)
  • 6.6 Physik und chemische Analytik der Polymere (3)
  • 8 Zerstörungsfreie Prüfung (3)
  • 1.7 Organische Spuren- und Lebensmittelanalytik (2)
  • 8.6 Faseroptische Sensorik (2)
  • 1.9 Chemische und optische Sensorik (1)
+ weitere

25 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
Kompaktsensor zur Online-Überwachung von Nitroaromaten (2016)
Wander, Lukas ; Paul, Andrea ; Rurack, Knut ; Biyikal, Mustafa ; Juritsch, Elevtheria ; Bernstein, Thomas ; Bartholmai, Matthias ; Noske, Reinhard
Nitroaromaten und insbesondere Trinitrotoluol (TNT) sind weit verbreitete Spreng- und Umweltschadstoffe. Die größte Herausforderung bei der Detektion von TNT in der Gasphase ist der geringe Dampfdruck. Derzeit werden vielerorts günstige, schnelle, handliche und einfach zu bedienende Alternativen zur klassischen TNT-Analytik entwickelt. Aktuell existieren keine einheitlichen Richtlinien für Sprengstoffsensoren. Hier wird die Entwicklung eines Messplatzes zur Validierung von Sprengstoffsensoren sowie die Erprobung eines kompakten Mustersensors vorgestellt.
Speeding up microplastics analysis with modern NIR spectroscopy (2017)
Wander, Lukas
Annually vast amounts of plastics are produced world-wide. However, recycling and waste management is still insufficient resulting in large quantities of plastics being released into the environment. Degradation by sunlight, mechanical and biological factors lead to the breakdown of this waste into little fragments. By convention particles smaller than 5 mm are referred to as microplastics (MP). The occurrence of MP has been reported by researchers virtually all around the globe. Gaining knowledge on MP is currently a time-consuming process because analysis mainly relies on micro-infrared and micro-Raman methods. Prior to that the particles need to undergo purification and enrichment. Thus, only small numbers and volumes of samples can be investigated. Here we tested NIR spectroscopy combined with a multivariate data analysis as a means of speeding up the process of MP analysis. Experiments were performed using the most abundant polymers polyethylene, polypropylene, polyethylene terephthalate and polystyrene. MP samples were obtained by adding the cryomilled and sieved (<125 µm) particles to approximately 1 g of standard soil at 0,5–10 mass%. Spectra were recorded with a fiber optic reflection probe connected to a FT-NIR spectrometer. 5–10 spectra recorded of each sample were used for the calibration of chemometric models (partial least squares regression, PLSR). “Unknown” test samples were then used to test the model’s capability to predict the type and amount of polymer. In samples containing 1–5 % of the polymers the prediction yielded the highest degree of agreement with the gravimetric reference values. At low polymer loads some false positive results in the identification were observed. Large amounts of polymers limited the prediction capability by a nonlinear behaviour of the absorption. Further testing was done with real world samples such as compost and washing machine filters. Even though the calibration did not account for these highly complex sample compositions, satisfactory results could be achieved.
High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil (2018)
Paul, Andrea ; Wander, Lukas ; Becker, Roland ; Goedecke, Caroline ; Braun, Ulrike
The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method.
Mikroplastikanalyse: Nahinfrarotspektroskopie und chemometrische Auswertung (2018)
Wander, Lukas
Für die Erfassung der Verbreitung von Mikroplastik (MP) in der Umwelt ist die zeit- und kostenaufwendige Analysestrategie und der damit verbundene geringe Probendurchsatz eine limitierende Größe. Eine große Zahl verschiedener Studien dokumentriet das Auftreten von MP über den gesamten Globus. Meist sind die Studien aufgrund des großen analytischen Aufwands auf exemplarische, stichpunktartige Untersuchungen kleiner Umweltaliquoten und zahlenmäßig kleiner Probenumfänge begrenzt. Um die Verbreitung, die Eintragspfade und den Verbleib von MP in der Umwelt besser zu verstehen und effektive Vermeidungsstrategien abzuleiten, ist es jedoch notwendig, analytisch mehr Proben erfassen zu können. Bildgebende mikro-spektroskopische Methoden wie das Raman- und FTIR-Imaging ermöglichen eine zeitaufwendige, umfassende Charakterisierung kleiner Umweltaliquoten. Neben der Partikelanzahl sind zusätzlich Informationen zu Partikelgröße, Größenverteilung und Oberflächenmorphologie zugänglich. Chemische und thermische Extraktionsverfahren sind bereits deutlich schneller und können diese Informationen durch eine Massenbilanz vervollständigen. Die analysierbare Probenmenge ist jedoch auf Milligramm Mengen beschränkt. Wir schlagen daher vor, die Analyse von Proben auf MP durch ein vorangestelltes Screening mit der Nahinfrarot-Spektroskopie (NIRS) zur komplementieren. In diesem wird bereits eine erste Einschätzung über die Präsenz von MP in einer Probe gefällt und dadurch die wertvolle Messzeit anderer Methoden effizienter genutzt. NIR zur Analyse von Polymeren wird seit langem eingesetzt, jedoch bisher lediglich im Rahmen einer Studie zur Mikroplastikuntersuchung mittels Hyperspektraler Bildgebung beschrieben. Der NIR Spektralbereich findet sich zwischen dem sichtbaren Licht und dem mittleren Infrarot (MIR). MIR Spektren sind durch klar definierte Banden charakterisiert, welche mehrheitlich von den Grundschwingungen der Moleküle stammen. Die höheren Energien im nahen Infrarot regen hingegen Kombinations- und Oberschwingungen der Streck und Biegeschwingungen an. Die resultierenden Absorptionsbanden sind oft breit und relativ unspezifisch. Erst mit Hilfe einer computergestützten Datenauswertung lassen sich aus diesen Spektren nützliche Informationen gewinnen. Dies erklärt die steigende Popularität der NIR-Spektroskopie in der jüngeren Vergangenheit mit einem Schwerpunkt als prozessanalytische Methode. NIR Spektrometer für das industrielle Prozessmonitoring zeichnen sich durch eine kompakte und robuste Konstruktionsweise aus. Die verfügbaren faseroptischen Reflexionssonden eignen sich gut um pulverförmige Proben zu untersuchen. Der räumlich erfassbare Messbereich kann durch die Sondengeometrie variiert werden. Sind die untersuchten Partikel im Verhältnis zur abgetasteten Fläche klein, wird als spektrale Information die Summe der Absorption aller Partikel im Sichtfeld erfasst. Die Methode ist deshalb nicht für Detailuntersuchungen von MP geeignet, erlaubt es jedoch innerhalb weniger Minuten eine Einschätzung über das Vorkommen von Mikroplastik in einer Probe zu treffen. Exemplarisch wurden für diese Untersuchungen vier der am weitesten verbreiteten Kunststoffe Polyethylen (PE), Polyethylenterephthalat (PET), Polypropylen (PP) und Polystyrol (PS) gewählt. Aus den additivfreien Polymeren wurden nach einer Kryo-vermahlung und anschließender Siebung (< 125 µm) Modellproben generiert. Die Polymere wurden dafür zu einem Massenanteil von 1 % mit einem Standardboden (LUFA2.3, gesiebt < 125 µm) vermischt. Die Gesamtmenge von 1 g je Probe wurde in Aluminiumbehältern präpariert und 8 Messungen an unterschiedlichen, zufällig gewählten Positionen vorgenommen. Die erhaltenen Spektren wurden zur Kalibrierung chemometrischer Modelle genutzt. In einem hierarchischen Ansatz wurde anhand der NIR-Spektren eine Klassifizierung vorgenommen: 1. Bestimmung ob eine Probe MP enthält (Ja/Nein). 2. Identifikation der Polymere in der Probe. Eine aussagekräftige Klassifizierung beruht auf einer Vorbehandlung der Spektren. Hierdurch werden die Unterschiede zwischen den einzelnen Polymerbanden hervorgehoben. Die Eignung der so erstellten Modelle wurde anhand eines Referenzmaterials und am Beispiel von Realproben erfolgreich getestet. Dabei zeigte sich, dass nicht nur in den erstellten Polymer-Bodenmischungen, sondern auch in den Rückständen von fermentiertem Bioabfall und in Filterrückständen einer Waschmaschine, MP richtig erkannt wurde. Weiterhin zeigten Tests mit Mikroplastik-freien Bodenproben unterschiedlicher Herkunft, dass keine falsch-positive Resultate erzeugt wurden. Alle vier untersuchten Polymere, d.h. PE, PET, PS und PP mit einem Massenanteil von 1 % in einer Bodenmatrix werden auch bei einer gemischten Polymerzusammensetzung mit der NIR-Spektroskopie erkannt. Der kombinierte Einsatz von NIRS und Chemometrie ermöglicht die Entscheidung über ein potenzielles Vorkommen sowie die Zuordnung des Materials der enthaltenen Polymerpartikel für eine Massefraktion ≥ 1 % in einer (trockenen) Probenmenge von 1 g innerhalb von 10–15 min. Der zeitaufwendige Schritt der Methode liegt hier in der Erstellung geeigneter chemometrischer Modelle sowie deren Validierung. Wesentliche Voraussetzung ist dabei, dass bei der Kalibrierung die Varianz der zu erwartenden Partikel und der Matrix realistisch abgebildet wird.
Analyzing large μ-FTIR data sets in search of microplastics (2019)
Wander, Lukas
Working towards a comprehensive understanding of introduction pathways, number, and fate of micro¬plastics in the environment, suitable analytical methods are a precondition. Micro-spectroscopic methods are probably the most widely used techniques. Besides their ability to measure single spectra of a particle or fiber, most modern FTIR- and Raman microscopes are also capable of two-dimensional imaging. This is very appealing to microplastics research because it allows to simultaneously characterize the analytes chemically as well as their size (distribution) and shape. Two-dimensional imaging on extensive sample areas with FTIR-micros¬copes is facilitated by focal plane array (FPA) detectors resulting in large data sets comprised of up to several million spectra. With numbers too large for manual inspection of each individual spectrum, automated data evaluation is inevitable. Identifying different polymers based on the comparison with known reference spectra (library search) has proven to be a suitable approach. For that purpose, FTIR-spectra of common plastics can be collected to create an individual reference library. To Supplement this ‘targeted analysis’, looking for known substances via library search, an exploratory approach was tested. Principal component analysis (PCA) proved to be a helpful tool to drastically reduce the size of the data set while maintaining the significant information. Subsequently, cluster analysis was used to find groups of similar spectra. Spectra found in different clusters could be assigned to different polymer types. The variation observed within clusters gives a hint on chemical variability of microplastics of the same polymer found in the sample. Spectra labeled according to the respective cluster/polymer type were used to build a classification model which allowed to quickly predict the polymer type based on the FTIR spectrum. Classification was tested on a second, independent data set and results were compared to the spectral library search procedure.
Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals (2019)
Kern, Simon ; Wander, Lukas ; Meyer, Klas ; Guhl, Svetlana ; Gottu Mukkula, A. R. ; Holtkamp, M. ; Salge, M. ; Fleischer, C. ; Weber, N. ; Engell, S. ; Paul, Andrea ; Pereira Remelhe, M. ; Maiwald, Michael
Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance.
Artificial neural networks for quantitative online NMR spectroscopy (2020)
Kern, Simon ; Liehr, Sascha ; Wander, Lukas ; Bornemann-Pfeiffer, Martin ; Müller, S. ; Maiwald, Michael ; Kowarik, Stefan
Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data.
Training Data of Quantitative Online NMR Spectroscopy for Artificial Neural Networks (2020)
Kern, Simon ; Liehr, Sascha ; Wander, Lukas ; Bornemann-Pfeiffer, Martin ; Müller, S. ; Maiwald, Michael ; Kowarik, Stefan
Data set of low-field NMR spectra of continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). 1H spectra (43 MHz) were recorded as single scans. Two different approaches for the generation of artificial neural networks training data for the prediction of reactant concentrations were used: (i) Training data based on combinations of measured pure component spectra and (ii) Training data based on a spectral model. Synthetic low-field NMR spectra First 4 columns in MAT-files represent component areas of each reactant within the synthetic mixture spectrum. Xi (“pure component spectra dataset”) Xii (“spectral model dataset”) Experimental low-field NMR spectra from MNDPA-Synthesis This data set represents low-field NMR-spectra recorded during continuous synthesis of nitro-4’-methyldiphenylamine (MNDPA). Reference values from high-field NMR results are included.
Flexible Automation with compact NMR instruments (2019)
Kern, Simon ; Wander, Lukas ; Meyer, Klas ; Guhl, Svetlana ; Gottu Mukkula, A. R. ; Holtkamp, M. ; Salge, M. ; Fleischer, C. ; Weber, N. ; King, R. ; Engell, S. ; Paul, Andrea ; Pereira Remelhe, M. ; Maiwald, Michael
Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions.
Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape (2017)
Maiwald, Michael ; Gräßer, Patrick ; Wander, Lukas ; Zientek, Nicolai ; Guhl, Svetlana ; Meyer, Klas ; Kern, Simon
The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu).
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks