Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe

Filtern

Autor

  • Schumacher, David (19)
  • Zscherpel, Uwe (7)
  • Ewert, Uwe (6)
  • Hakim, I. (3)
  • Meyendorf, N. (3)
  • Donaldson, S. (2)
  • Ou, D. (2)
  • Redmer, Bernhard (2)
  • Trappe, Volker (2)
  • Abo Ras, M. (1)
+ weitere

Erscheinungsjahr

  • 2020 (1)
  • 2019 (4)
  • 2018 (5)
  • 2017 (4)
  • 2016 (1)
  • 2015 (3)
  • 2014 (1)

Dokumenttyp

  • Beitrag zu einem Tagungsband (10)
  • Vortrag (5)
  • Zeitschriftenartikel (3)
  • Dissertation (1)

Sprache

  • Englisch (17)
  • Deutsch (2)

Referierte Publikation

  • nein (12)
  • ja (7)

Schlagworte

  • Laminography (5)
  • Non-destructive testing (4)
  • Photon counting detectors (4)
  • Carbon fiber reinforced polymers (3)
  • Computed tomography (3)
  • Dual-energy (3)
  • Photon counting detector (3)
  • Radiography (3)
  • Ultrasound (3)
  • X-ray imaging (3)
+ weitere

Organisationseinheit der BAM

  • 8 Zerstörungsfreie Prüfung (18)
  • 8.3 Radiologische Verfahren (18)
  • 5 Werkstofftechnik (3)
  • 5.3 Mechanik der Polymerwerkstoffe (3)
  • 8.5 Mikro-ZfP (2)

19 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
Recent developments of photon counting and energy discriminating detectors for radiographic imaging (2018)
Schumacher, David ; Zscherpel, Uwe ; Ewert, Uwe
The direct detection of X-ray photons into electrical signals is enabled by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray image detector. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be diminished. By setting energy thresholds, selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination or reduction of scattered radiation, which results in an enhanced contrast sensitivity.
X-ray tomographic in-service inspection of girth welds – the european project tomoweld (2015)
Ewert, Uwe ; Redmer, Benrhard ; Schumacher, David ; Thiessenhusen, Kai-Uwe ; Bellon, Carsten ; Nicholson, P. I. ; Clarke, A. L. ; Finke-Härkönen, K.-P.
The new standard ‘ISO 17636-2:2013: Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray techniques with digital detectors’, defines the practice for radiographic inspection of welded pipes for manufacturing and in-service inspection. It is applied in Europe for inspections of pipe welds in nuclear power plants as well as in chemical plants and allows a faster inspection with digital detector arrays (DDA) than with film. Nevertheless, it does not allow the evaluation of the depth and shape of volumetric and planar indications. In 2001 a planar tomography scanner, TomoCAR, was introduced for mechanized radiographic testing (RT) inspection and non-destructive measurement of cross sections. The project TomoWELD is based on a new concept of the scan geometry, an enhanced GPU based reconstruction, and the application of a new generation of photon counting DDAs based on CdTe crystal CMOS hybrids. The new detector permits the selection of energy thresholds to obtain an optimum energy range and reduction of the influence of scattered radiation. The concept and first measurements are presented. Flaw depth and shape of volumetric and planar irregularities can be determined.
Properties and application areas of photon counting and energy resolving digital detector arrays (2015)
Schumacher, David
Since a few years the direct detection of X-ray photons into electrical signals is allowed by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. NDT energies up to 400 keV are today also possible. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detectors) with a photo conducting layer of much higher thickness and a high voltage across it. If the read-out speed is high enough (ca. 50 – 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By definition of energy thresholds selected energy ranges of the X-ray spectrum can be detected or also suppressed. This allows material discrimination by dual-energy technique or the reduction of image contributions from scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct converting DDAs in comparison to the conventional indirect converting detectors for fiber composites and thick walled steel pipes (up to 35 mm wall thickness). Possible new application areas of NDT will be discussed for material discrimination especially within fiber reinforced composites (e.g. CFRC und GFRC).
Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector (2019)
Ou, D. ; Schumacher, David ; Zscherpel, Uwe ; Xiao, Y.
Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography.
Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors (2018)
Schumacher, David ; Sharma, R. ; Grager, J.-C. ; Schrapp, M.
Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction.
Defect recognition in CFRP components using various NDT methods within a smart manufacturing process (2018)
Schumacher, David ; Meyendorf, N. ; Hakim, I. ; Ewert, Uwe
The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.
Eigenschaften und Einsatzgebiete photonenzählender und energieauflösender Röntgenmatrixdetektoren (2015)
Schumacher, David
X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades (2018)
Kupsch, Andreas ; Trappe, Volker ; Nielow, D. ; Schumacher, David ; Lange, A. ; Hentschel, M.P. ; Redmer, Bernhard ; Ewert, U. ; Bruno, Giovanni
3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state.
From W. C. Röntgen to modern Tomography (2020)
Schumacher, David
A not complete review of X-Ray related milestones from 1895 to the 21st century.
Wind turbine rotor blade testing by dual-energy laminography (2019)
Schumacher, David
Modern wind turbine rotor blades consist of sandwich shell segments made from glass fiber reinforced polymers. During manufacturing, defects can arise which could lead to failure of the whole component under dynamic mechanical and thermal loads. Hence during operation defects can arise which, if detected, can be repaired locally and in-situ by applying repair patches instead of taking the whole rotor blade down and repair it remotely. This method is much more time and cost effective, since the shut-down time of the energy converter is limited to a minimum. These repair patches can, however, also lead to new defects if not applied optimally. Therefore, it is necessary to control the quality of the repair patches to ensure the best possible restoration of structural integrity of the component. As a rotor blade is an object with a large aspect ratio, X-ray laminography is predestined to provide 3D information of the objective volume. To enhance the amount of information gained from laminographic reconstruction, we use in this study a photon counting and energy discriminating X-ray detector and apply a material decomposition algorithm to the data. By inherently separating the incident spectra within the detection process into two distinct energy bins, the basis material decomposition can provide material resolved images. Choosing glass and epoxy resin as basis materials and numerically solving the inverse dual-energy equation system, the reconstructed laminographic datasets contain highly valuable information about the distribution of the basis materials within the structure. Furthermore, cross- artifacts arising from the limited angle of the projection data can be reduced by this method which allows to investigate structures that were hidden underneath the artefacts.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks