Filtern
Erscheinungsjahr
Dokumenttyp
- Beitrag zu einem Tagungsband (82)
- Vortrag (60)
- Zeitschriftenartikel (57)
- Buchkapitel (5)
- Beitrag zu einem Sammelband (4)
- Posterpräsentation (4)
- Dissertation (1)
- Sonstiges (1)
- Forschungsbericht (1)
Sprache
- Englisch (127)
- Deutsch (78)
- Mehrsprachig (10)
Schlagworte
- Rheology (49)
- Cement (44)
- Concrete (28)
- Africa (16)
- Rheologie (14)
- Self-compacting concrete (13)
- Superplasticizer (12)
- Admixtures (11)
- Polycarboxylate ether (11)
- Polysaccharides (10)
Organisationseinheit der BAM
Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced.
Polysaccharides are important rheology modifying admixtures in the building material sector.
The use of starch is becoming increasingly important, due to many ecological and economic advantages. In the construction sector, starch ethers are being used as thickeners and as means to increase the yield stress. The starch ethers that are available on the market differ in
their behaviour, which can vary greatly depending upon the binder system and mortar composition, e.g. solid volume content, binder type, additional admixtures. In view of the limited knowledge about the influence of molecular modifications associated with cement based systems, some fundamental rheological functional mechanisms were analysed in this study. The differently modified starch ethers used were derived from potatoes. They varied in their charges and degrees of hydroxypropylation. The setting and the flow behaviour of all examined variations
of starch ethers were analysed in cement pastes. In order to illustrate the effects of the starch ethers that were used, the water-cement ratio (w/c) was held constant in all the mixtures [Schmidt 2012]. The results indicated significant differences in setting and flow behaviour.
The study introduces the porous medium model for the simulation of concrete flow through highly-reinforced sections. It shows that numerical simulations can predict concrete behavior during casting and help to avoid expensive mistakes.