Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (159)
- Vortrag (31)
- Posterpräsentation (16)
- Beitrag zu einem Sammelband (12)
- Beitrag zu einem Tagungsband (11)
- Monografie (2)
- Sonstiges (2)
- Forschungsbericht (2)
- Buchkapitel (1)
Sprache
- Englisch (182)
- Deutsch (52)
- Mehrsprachig (1)
- Spanisch (1)
Schlagworte
- Fluorescence (60)
- Fluoreszenz (37)
- Hybridmaterialien (14)
- Sensorik (11)
- Farbstoffe (10)
- Nanopartikel (10)
- Supramolekulare Chemie (10)
- DNA (8)
- Dyes (8)
- Dyes/pigments (8)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (67)
- 1.9 Chemische und optische Sensorik (67)
- 1.5 Proteinanalytik (6)
- 6 Materialchemie (5)
- 8 Zerstörungsfreie Prüfung (5)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (5)
- 1.8 Umweltanalytik (4)
- 6.1 Oberflächenanalytik und Grenzflächenchemie (3)
- P Präsidium (3)
- 1.1 Anorganische Spurenanalytik (2)
Integrating fluorescent probes with sensing matrices presents a major challenge because usually, when confined in a rather rigid matrix, fluorophores tend to behave completely different than for instance in the molecular state in solution. The lecture reviews the major strategies that have been devised recently to circumvent such issues with special focus on the works carried out in this field by BAM’s Chemical and Optical Sensing Division. Moreover, it will be shown that by using certain strategies not only can the response behavior be retained but synergistic effects can even endow the hybrid with a much better performance than the probe molecule alone.
Macrocycle-containing fluorescent probes continue to be one of the most popular classes of indicator molecules for the sensitive optical detection of ionic inorganic analytes, in particular metal ions, since the first integration of crown ether building blocks into chromophoric π systems more than 30 years ago. However, whereas a large multitude of such probes have been described for operation in organic or mixed aqueous environments, the step to realistic analytical media such as water samples, aqueous food extracts or body fluids is still scarce. On one hand, this is due to considerably low complex stability constants for instance for alkali and alkaline-earth metal ions. On the other hand, many classes of organic dyes that show favourable spectroscopic properties and ion-induced responses in organic solvents are not soluble in neat aqueous media and/or exhibit only significantly quenched fluorescence, even if transition metal ions are binding strongly to the receptor unit. A way to circumvent such problems in a rather simple manner is the steric incorporation of fluorescent probes into mesoporous silica nanomaterials. The local polarity in such pores, whether nascent or modified appropriately with functional silanes, resembles much more a quasi-organic environment while at the same time allowing for free diffusion of water and its cargo.
Two examples of powerful hybrid signalling systems will be presented, utilizing charge transfer-type indicator molecules that show inferior sensing properties in their molecular state. One example discusses mercury(II) determination over an extended concentration range and the other discusses silver(I) and mercury(II) discrimination simply on the basis of photophysical effects retained in the hybrid materials.
Since more than 20 years, optical spectroscopic techniques, in particular fluorescence-based methods, are on the rise in many different areas of chemical and biochemical analysis, with no end being in sight.1,2 Advances in miniaturization and remote applications on one hand and ground-breaking developments in microscopy and laser-based high-throughput instrumentation on the other hand have fuelled these developments substantially.3,4 At the core of utmost of these applications however is not only the instrument, but a small entity that is able to absorb and emit photons and thus to report on the actual (bio)chemistry that is going on in a particular sample of interest.5,6 Besides intense research on various types of luminescent particles (e.g., quantum dots and carbon dots) and proteins, dye chemistry has thus seen its revival and the number of publications dealing with the design, synthesis and application of new fluorescent dyes as probes, stains, labels or indicators is still continuing to grow.
Among the various classes of dyes available as bright fluorophores for a wavelength range that is compatible with many (bio)analytical applications and the respective instrumentation, in particular pyrrolic dyes that do not belong to the classical porphyrins or phthalocyanines have received strong attention recently. Starting perhaps with the revival of the traditional boron-dipyrromethene laser dye ca. 15 years ago,7 these so-called BODIPYs have developed into a colourful spectrum of different derivatives.8 However, the interest in expanding the range of pyrrole-containing π-systems beyond BODIPYs has also constantly increased and has brought about several other pyrrole-based ring systems such as diketopyrrolopyrroles9 or dipyrrolonaphthyridinediones which possess a favourable brightness and other interesting properties. The present contribution will give a critical overview of the field, pinpointing advantages and prospects as well as discussing potential aspects of improvement with an emphasis on the chemical sensing and the longer wavelength range.
The successful synthesis of tetraphenyltetraphenanthroporphyrin (TPTPhenP; 5a) in 2006 under modified Rothemund–Lindsey conditions yielded a tetraphenyl porphyrinoid with a B band redshifted to an unprecedented 576 nm. Radially symmetric fused-ring expansion of tetraphenylporphyrin with phenanthrene moieties results in very deep saddling due to steric crowding and very marked redshifts of the Q and B (or Soret) porphyrinoid absorption bands. The extent to which the TPTPhenP structure can be further modified is explored, and the optical properties of TPTPhenPs are analyzed based on a perimeter model approach that makes use of time-dependent DFT calculations and magnetic circular dichroism spectroscopy and also based on a detailed analysis of the fluorescence emission. Attempts to introduce substituents at the ortho and meta positions of the meso-phenyl groups and to insert a central metal proved unsuccessful. The synthesis of a series of TPTPhenPs with strong electron-withdrawing (—CN, —NO2) and -donating (—CH3, —N(CH3)2) substituents at the para positions of the meso-phenyl rings is reported. Marked redshifts of the main spectral bands were consistently observed. The most pronounced spectral changes were observed with —N(CH3)2 groups (5i) due to a marked destabilization of the HOMO, which has large MO coefficients on the meso-carbon atoms. Protonation of 5i at both the ligand core and at the —N(CH3)2 groups resulted in unprecedented Q00 band absorption at wavelengths greater than 1200 nm.
An asymmetrically core-extended boron-dipyrromethene (BDP) dye was equipped with two electron-donating macrocyclic binding units with different metal ion preferences to operate as an ionically driven molecular IMPLICATION gate. A Na+-responsive tetraoxa-aza crown ether (R2) was integrated into the extended π system of the BDP chromophore to trigger strong intramolecular charge transfer (ICT2) fluorescence and guarantee cation-induced spectral shifts in absorption. A dithia-oxa-aza crown (R1) that responds to Ag+ was attached to the meso position of BDP in an electronically decoupled fashion to independently control a second ICT1 process of a quenching nature. The bifunctional molecule is designed in such a way that in the absence of both inputs, ICT1 does not compete with ICT2 and a high fluorescence output is obtained (InA=InB=0→Out=1). Accordingly, binding of only Ag+ at R1 (InA=1, InB=0) as well as complexation of both receptors (InA=InB=1) also yields Out=1. Only for the case in which Na+ is bound at R2 and R1 is in its free state does quenching occur, which is the distinguishing characteristic for the InA=0 and InB=1→Out=0 state that is required for a logic IMPLICATION gate and Boolean operations such as IF-THEN or NOT.
Luminescence amplification strategies integrated with microparticle and nanoparticle platforms
(2011)
The amplification of luminescence signals is often the key to sensitive and powerful detection protocols. Besides optimized fluorescent probes and labels, functionalized nano- and microparticles have received strongly increasing attention in this context during the past decade. This contribution introduces the main signalling concepts for particle-based amplification strategies and stresses, especially the important role that metal and semiconductor nanoparticles play in this field. Besides resonance energy transfer, metal-enhanced emission and the catalytic generation of luminescence, the impact of multi-chromophoric objects such as dye nanocrystals, dendrimers, conjugated polymers or mesoporous hybrid materials is assessed. The representative examples discussed cover a broad range of analytes from metal ions and small organic molecules to oligonucleotides and enzyme activity.
The X-ray crystallographic, optical spectroscopic, and electrochemical properties of a newly synthesized class of boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors (bc-BDP) are presented. The BDI chromophore was designed to show intensive absorption and strong fluorescence in an applicationary advantageous spectral range. Its modular architecture permits fusion of a second subunit, for example, a receptor moiety to the dye's core to yield directly linked yet perpendicularly prearranged composite systems. The synthesis was developed to allow facile tuning of the chromophore platform and to thus adjust its redox properties. X-ray analysis revealed a pronounced planarity of the chromophore in the case of the BDIs, which led to a remarkable close packing in the crystal of the simplest derivative. On the other hand, deviation from planarity was found for the diester-substituted bc-BDP benzocrown that exhibits a butterfly-like conformation in the crystal. Both families of dyes show charge- or electron-transfer-type fluorescence-quenching characteristics in polar solvents when equipped with a strong donor in the meso-position of the core. These processes can be utilized for signaling purposes if an appropriate receptor is introduced. Further modification of the chromophore can invoke such a guest-responsive intramolecular quenching process, also for receptor groups of low electron density, for example, benzocrowns. In addition to the design of various prototype molecules, a promising fluoroionophore for Na+ was obtained that absorbs and emits in the 650 nm region and shows a strong fluorescence enhancement upon analyte binding. Furthermore, investigation of the remarkable solvatokinetic fluorescence properties of the butterfly-like bc-BDP derivatives suggested that a second intrinsic nonradiative deactivation channel can play a role in the photophysics of boron-dipyrromethene dyes.
Four novel borondipyrromethene (BDP) and -diindomethene (BDI) dyes with one or two (dimethylamino)styryl extensions at the chromophore were synthesized and spectroscopically investigated. An X-ray crystal structure shows that the extended auxochrome is virtually planar. All dyes thus display intense red/near infrared (NIR) absorption and emission. The (dimethylamino)styryl group induces a charge-transfer character that entails bright solvatochromic fluorescence, which is only quenched with increasing solvent polarity according to the energy-gap law. The dye with an additional dimethylanilino group at the meso position of BDP shows a remarkable switching of lipophilicity by protonation. Two dyes with an 8-hydroxyquinoline ligand at the meso position display quenched emission in the presence of Hg2+ or Al3+ owing to electron transfer from the excited BDP to the complexed receptor. The BDI dye presents a pH indicator with bright fluorescence and extremely low fluorescence anisotropy.