Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe

Filtern

Autor

  • Pauw, Brian Richard (51)
  • Smales, Glen Jacob (8)
  • Schönhals, Andreas (4)
  • Smith, A. J. (4)
  • Thünemann, Andreas F. (4)
  • Schnepp, Z. (3)
  • Aratsu, K. (2)
  • Böhning, Martin (2)
  • Hollamby, M. J. (2)
  • Kulak, A. (2)
+ weitere

Erscheinungsjahr

  • 2020 (17)
  • 2019 (16)
  • 2018 (7)
  • 2017 (3)
  • 2016 (4)
  • 2015 (4)

Dokumenttyp

  • Vortrag (22)
  • Zeitschriftenartikel (19)
  • Posterpräsentation (6)
  • Forschungsdatensatz (2)
  • Beitrag zu einem Tagungsband (1)
  • Sonstiges (1)

Sprache

  • Englisch (48)
  • Deutsch (3)

Referierte Publikation

  • nein (35)
  • ja (16)

Schlagworte

  • SAXS (14)
  • Small angle scattering (11)
  • Small-angle scattering (11)
  • X-ray scattering (6)
  • Software (5)
  • Small-angle X-ray scattering (4)
  • Analysis (3)
  • Methodology (3)
  • Nanocomposite (3)
  • Nanostructure (3)
+ weitere

Organisationseinheit der BAM

  • 6 Materialchemie (51)
  • 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (50)
  • 6.6 Physik und chemische Analytik der Polymere (8)
  • 1 Analytische Chemie; Referenzmaterialien (2)
  • 7 Bauwerkssicherheit (2)
  • 7.5 Technische Eigenschaften von Polymerwerkstoffen (2)
  • 1.2 Biophotonik (1)
  • 1.9 Chemische und optische Sensorik (1)
  • 5 Werkstofftechnik (1)
  • 5.4 Keramische Prozesstechnik und Biowerkstoffe (1)
+ weitere

51 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
The modular small-angle X-ray scattering data correction sequence (2017)
Pauw, Brian Richard ; Smith, A. J. ; Snow, T. ; Terril, N. J. ; Thünemann, Andreas F.
Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.
Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison (2017)
Pauw, Brian Richard ; Kästner, Claudia ; Thünemann, Andreas F.
This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods.
McSAS: software for the retrieval of model parameter distributions from scattering patterns (2015)
Breßler, Ingo ; Pauw, Brian Richard ; Thünemann, Andreas F.
A user-friendly open-source Monte Carlo regression package (McSAS) is presented, which structures the analysis of small-angle scattering (SAS) using uncorrelated shape-similar particles (or scattering contributions). The underdetermined problem is solvable, provided that sufficient external information is available. Based on this, the user picks a scatterer contribution model (or 'shape') from a comprehensive library and defines variation intervals of its model parameters. A multitude of scattering contribution models are included, including prolate and oblate nanoparticles, core-shell objects, several polymer models, and a model for densely packed spheres. Most importantly, the form-free Monte Carlo nature of McSAS means it is not necessary to provide further restrictions on the mathematical form of the parameter distribution; without prior knowledge, McSAS is able to extract complex multimodal or odd-shaped parameter distributions from SAS data. When provided with data on an absolute scale with reasonable uncertainty estimates, the software outputs model parameter distributions in absolute volume fraction, and provides the modes of the distribution (e.g. mean, variance etc.). In addition to facilitating the evaluation of (series of) SAS curves, McSAS also helps in assessing the significance of the results through the addition of uncertainty estimates to the result. The McSAS software can be integrated as part of an automated reduction and analysis procedure in laboratory instruments or at synchrotron beamlines.
Extending SAXS instrument ranges through addition of a portable, inexpensive USAXS module (2019)
Pauw, Brian Richard ; Smith, A. J. ; Snow, T. ; Shebanova, O. ; Sutter, J. P. ; Hermida-Merino, D. ; Smales, Glen Jacob ; Terrill, N. J. ; Thünemann, Andreas F. ; Bras, W.
Ultra-SAXS can enhance the capabilities of existing SAXS/WAXS beamlines and laboratory instruments. A compact Ultra-SAXS module has been developed, which extends the measurable q-range with 0:0015 < q 1/nm) < 0:2, allowing structural dimensions between 30 < D(nm) < 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements.
Everything SAXS (2019)
Pauw, Brian Richard
A lecture to introduce small-angle scattering to Master's students at the Humbold University
Looking at Nothing: life with a weblog (2015)
Pauw, Brian Richard
Searching for harmony in metrology: Examples from SAXS (2016)
Pauw, Brian Richard
General SAXS introductory talk given at Keele University (UK) on the 30th of November, 2016.
An Ultra-SAXS Instrument on a Shoestring Budget (2015)
Pauw, Brian Richard
McSAS for SAS analysis: Usage, benefits, and potential pitfalls (2019)
Pauw, Brian Richard
Introducing McSAS, the analytical tool (software) we developed for extracting form-free size distributions from X-ray scattering patterns.
The SPONGE (2020)
Pauw, Brian Richard ; Smales, Glen Jacob
This software tool is intended to calculate X-ray scattering patterns from 3D objects described by an STL file. The fundamentals and use example(s) are shown.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks