### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (6)
- Vortrag (5)
- Posterpräsentation (2)

#### Schlagworte

- Soil-structure interaction (7)
- Interface (5)
- Numerical modelling (4)
- Contact problem (3)
- Numerical model (2)
- Offshore foundations (2)
- Soil-pile interaction (2)
- Analytical Design Methods (1)
- Cyclic axial shearing (1)
- Foundation Pile (1)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (13)
- 7.2 Ingenieurbau (13)

The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through interface elements and adequate constitutive models. In this work, a constitutive model in the framework of Generalized Plasticity for sandy soils has been chosen to be adapted for the interface zone.
From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data.

The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data.

The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena.

The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness Interface element of Beer is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The Mohr-Coulomb and Clough and Duncan models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of
elasto-plasticity such as: Lashkari and Mortara were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as:
relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end.

In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity.
The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously.

The response of many geotechnical systems, whose structural behavior depends on granular friction and a shearing effect with the ground, is characterized by a complex soil-structure interaction at their interfaces. Experimentally it is found that this interaction is highly non-linear, state-dependent and localized within a narrow layer of soil next to the structure, whereby cyclic loads can play a key role. Numerically, this behavior is often modelled with overly simplified models of interface elements that neglect cyclic effects within the soil. This work introduces a new perspective with an adequate constitutive model in the framework of Generalized Plasticity for sandy soils for an improved consideration of the interface mechanics.

The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems.

The governing load bearing mechanism of multi-pile foundations is often the shaft friction. Under cyclic loading the soil particles next to the foundation rearrange and tend to compact leading to a decrease of the surrounding normal stress. The reduction of the normal stress leads to a lower threshold for shear stress (friction fatigue), which results in a degraded shaft bearing capacity. The common interface models used for numerical simulations (e.g. Mohr-Coulomb) are not able to capture such behavior. This work aims to develop an interface material model that incorporates such features of the contact behavior at the soil-structure interface.

In case one wants to predict or design the bearing capacity of a foundation pile and there are no possibilities to perform an in-situ test, such as a Cone Penetration Test, the pile bearing capacity is in most cases estimated with analytical formulas. The most known and used method is the Meyerhof method published some decades ago. There are also other design methods such as derived from a certain failure mechanism around the pile tip, which is, in most cases, wedge failure mechanism. This failure mechanism was originally developed for a shallow (infinite) strip foundation, though. Therefore, it represents a plane failure mechanism.
Numerical simulations on loaded foundation piles performed with the Plaxis software Show however, that the failure mechanism of a foundation pile represents a far more complex threedimensional failure mechanism around the pile tip.
In addition, the existing analytical methods for foundation piles are based on the vertical stresses in the soil, as if the failure mechanism is the same as of a shallow foundation. Numerical simulations, performed in Plaxis show that, not the vertical, but the horizontal stresses, play an important role on the pile bearing capacity. Plaxis represents the stresses in the soil by using the procedure. So, different horizontal soil stresses are obtained for different values of the lateral earth pressure coefficient. The results show that the pile tip bearing capacity depends strongly on the horizontal stresses in the soil, but only for. The same results were observed by using a Material Point Method (MPM). Consequently, the analytical methods should estimate the pile bearing.