Filtern
Referierte Publikation
- ja (2) (entfernen)
Schlagworte
- Borosilicate glass (1)
- Elastic constants (1)
- Glass (1)
- Glass transition (1)
- Internal friction (1)
- Microhardness (1)
- Relaxation (1)
- Soda-lime-silica (1)
- Water (1)
- Water content (1)
Organisationseinheit der BAM
- 5 Werkstofftechnik (2)
- 5.6 Glas (2)
Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses.
The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. It is found that the Poisson ratio and the water content are positively correlated, while density and the elastic moduli decrease with increasing water content. Vickers hardness decreases by approximately 27% from the dry to the most hydrous glass. For water fractions <3 mol%, the dependencies are non-linear reflecting the non-linear change in the concentrations of OH and H2O molecules dissolved, whereas for water fractions >3 mol% linear dependencies are found. To distinguish the effect of structural water and environmental water, indentations were performed in toluene, nitrogen gas and air. Timedependent softening was evident for testing dry glasses in humid atmospheres as well as for tests of hydrous glasses in dry atmospheres. This indicates that the response times of dissolved water species are effectively equal in both scenarios.