### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Beitrag zu einem Tagungsband (47)
- Vortrag (43)
- Zeitschriftenartikel (17)
- Beitrag zu einem Sammelband (8)
- Posterpräsentation (3)
- Monografie (1)

#### Schlagworte

- Simulation (23)
- Radiographie (12)
- Radiography (12)
- CAD (10)
- Modeling (6)
- Monte Carlo methods (6)
- Monte Carlo Verfahren (5)
- Spectrum (5)
- Computed tomography (4)
- Computer-Simulation (4)

#### Organisationseinheit der BAM

A fast quantitative model for the energy spectra of radiation emitted by X-ray tubes is described, handling thin as well as thick plane targets of arbitrary materials. The developed model is based on fundamental interaction cross sections, describing electron and photon transport via numerical integration of discretized distributions. While the focus lies on bremsstrahlung production, modeling of characteristic radiation is fully integrated. The model does not include any free parameters. The validity of the model is shown through comparison with measurements and Monte Carlo simulations for several combinations of target material and acceleration potential between 30 kV and 450 kV.

X-ray backscatter imaging is a promising NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit-collimator system, the shielding between the source and scatter camera, and the type of detector. Here a single-slit as well as a multi-slit camera are considered. For the multi-slit camera several twisted slits were parallel arranged in a metal block. This camera generates a set of similar projections per slit overlaying each other. Afterwards, the image is corrected based on a de-convolution algorithm to focus the overlaying projections into a single representation of the object.
The scatter phenomena in the object under inspection are investigated. In this contribution, the Monte Carlo model McRay is discussed, which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. Simulations are important to describe the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Experimental results will be presented and compared with simulations.

Radiography benchmark 2014
(2015)

The purpose of the 2014 WFNDEC RT benchmark study was to compare predictions of various models of radiographic techniques, in particular those that predict the contribution of scattered radiation. All calculations were carried out for homogenous materials and a mono-energetic X-ray point source in the energy range between 100 keV and 10 MeV. The calculations were to include the best physics approach available considering electron binding effects. Secondary effects like X-ray fluorescence and bremsstrahlung production were to be taken into account if possible. The problem to be considered had two parts. Part I examined the spectrum and the spatial distribution of radiation behind a single iron plate. Part II considered two equally sized plates, made of iron and aluminum respectively, only evaluating the spatial distribution. Here we present the results of above benchmark study, comparing them to MCNP as the assumed reference model. The possible origins of the observed deviations are discussed.

X-ray backscatter imaging is a well established NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit collimator system, the shielding between source and scatter camera, and the type of detector. In addition, the scatter phenomena in to the investigated object need to be understood.
In this contribution, we present a Monte Carlo model McRay which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. It allows not only calculating the scatter image for a given experimental setup but also registering the spectrum of the detected scattered photons. Both aspects are important to understand the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Additionally experimental results will be presented and compared with simulations.

Modeling of the photon-electron cascade progress in multicomponent objects of complex geometrical structure by use of hybrid supercomputers is considered. An approach to computing the cascade processes is developed. The approach has three key properties allowing the effective use of heterogeneous structure of computers for solving the tasks of radiation transport in complex multi-scale geometries. Firstly, two different discreet geometrical description of an object being under radiation is used: triangulated model for photon transport and voxel model for electron transport. Secondly, small parameter of the problem is explicitly taking into account for modeling surface effects (for instance, electron emission). Thirdly, the effective calculation decomposition between CPU and GPU is developed for significant increasing the speed of calculations of processes in question. Modeling of experiment on researching the bremsstrahlung generated by electron beam in Ta target is carried out. Comparison of computing and experimental results shows satisfactory consent.