### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (3)
- Vortrag (1)

#### Schlagworte

- Concrete (3)
- Damage (2)
- FEM (1)
- Fatigue (1)
- Macroscopic (1)
- Material behavior (1)
- Mesoscale (1)
- Multiphysics (1)
- Multiphysics Problems (1)
- Multiscale (1)

#### Organisationseinheit der BAM

Modeling the interactions of creep, shrinkage and damage in a multiphysics simulation of concrete
(2018)

The time dependent, mechanical behavior of concrete is affected by multiple phenomena like creep, shrinkage and damage propagation. The interactions of these processes are supposed to have significant influence on the materials response to external loading. For example it can be observed that the compressive strength of concrete rises with lowering the moisture content [Dahms, 1968].
Most of the constitutive models for finite element methods are designed with just a single phenomena in mind. In multiphysics simulations it is quiet common to use a linear superposition, i.e. additive decomposition of the total strain into elastic shrinkage, creep or thermal strains.
In this paper, the interactions of creep, shrinkage and damage models are investigated, in particular for cases where the assumption of linear superposition is questionable. A gradient enhanced damage model proposed by [Peerlings et al., 1996] is employed. Creep is modeled as a Kelvin chain as described in [Jirásek and Bažant, 2001]. Shrinkage is simulated by using two different approaches. The first model simulates shrinkage as an additional moisture dependent strain component. In the second model, shrinkage is simulated as a moisture dependent pore pressure applied to the solid bulk.
The impact of model interactions will be discussed with a focus on simulating the influence of the moisture content on the macroscopic strength. The model is validated by comparison to experimental data.

The heterogeneous mesostructure of concreted causes local stress concentrations. Stress dependent phenomena like damage and creep as well as their interactions are effected by those stress
concentrations. Therefore a material model’s macroscopic behavior will differ whether the mesoscale structure is considered or not. The differences between the mesoscale approach and an homogeneous approach will be presented. The results are discussed with focus on the true materials behavior.

Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor importance. Because of the growing interest in maxing out the capacities of concrete, its fatigue failure under compression has become an issue. A variety of interacting phenomena such as e.g. loss of prestress, degradation due to chemical reactions or creep and shrinkage influence the fatigue resistance. Failure due to cyclic loads is generally not instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable numerical model to predict the performance of concrete over its lifetime is required, which accurately captures order effects and full three-dimensional stress states.
Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales.
However, a key limitation of those models is that they generally do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. This is due to the computational effort necessary to explicitly resolve every cycle which exceeds the currently available computational resources. The limitation can only be overcome by the application of multiscale methods in time.
The objective of the paper is the development of numerical methods for the simulation of concrete under fatigue loading using temporal multiscale methods.
First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses [1]. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from static tests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level.
Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach [2]. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed.
Finally, the developed methods will be validated and compared to experimental data.
[1] Vitaliy Kindrachuk, Marc Thiele, Jörg F. Unger. Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression, International Journal of Fatigue, 78:81-94, 2015
[2] Vitaliy Kindrachuk, Jörg F. Unger. A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration, International Journal of Fatigue, 100:215-228, 2017

Concrete is a complex material. Its properties evolve over time, especially at early age, and are dependent on environmental conditions, i.e. temperature and moisture conditions, as well as the composition of the material.
This leads to a variety of macroscopic phenomena such as hydration/solidification/hardening, creep and shrinkage, thermal strains, damage and inelastic deformations. Most of these phenomena are characterized by specific set of model assumptions and often an additive decomposition of strains into elastic, plastic, shrinkage and creep components is performed. Each of these phenomena are investigated separately and a number of respective independent models have been designed. The interactions are then accounted for by adding appropriate correction factors or additional models for the particular interaction. This paper discusses the importance of reconsider even in the experimental phase the model assumptions required to generalize the experimental data into models used in design codes. It is especially underlined that the complex macroscopic behaviour of concrete is strongly influenced by its multiscale and multiphyscis nature and two examples (shrinkage and fatigue) of interacting phenomena are discussed.