Filtern
Dokumenttyp
- Zeitschriftenartikel (18)
- Posterpräsentation (10)
- Beitrag zu einem Tagungsband (3)
- Buchkapitel (1)
- Vortrag (1)
- Forschungsbericht (1)
Sprache
- Englisch (30)
- Deutsch (3)
- Mehrsprachig (1)
Schlagworte
- Fluorescence (11)
- Air quality monitoring (3)
- Ammonia gas sensor (3)
- Mesoporous silica materials (3)
- Standard gas generator (3)
- Ammonia (2)
- Core-shell particles (2)
- Fluorescence sensors (2)
- Lateral flow assay (2)
- MIPs (2)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (34)
- 1.9 Chemische und optische Sensorik (32)
- 8 Zerstörungsfreie Prüfung (10)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (10)
- 4 Material und Umwelt (6)
- 4.2 Materialien und Luftschadstoffe (6)
- 1.2 Biophotonik (3)
- 1.0 Abteilungsleitung und andere (2)
- 1.1 Anorganische Spurenanalytik (2)
- 6 Materialchemie (2)
Digital holographic cytometry (DHC) is a state-of-the-art quantitative Phase imaging (QPI) method that permits time-lapse imaging of cells without induced cellular toxicity. DHC platforms equipped with semi-automated image segmentation and analysis software packages for assessing cell behavior are commercially available. In this study we investigate the possible uptake of nanoprobes in macrophages in vitro over time.
An ideal sensor system is a combination of a selective receptor, an effective transducer, and a sensitive detector. To utilize molecularly imprinted polymers (MIPs) as responsive recognition phases in sensors, the employment of fluorescent molecules or nanoparticles (NPs) that show prominent changes in their spectroscopic properties after binding of the target molecule in the MIP’s cavity is particularly attractive. Such fluorescent MIPs (fMIPs) act through target-induced quenching, enhancement, or spectral shifts of the fluorescence. This contribution introduces different strategies of incorporation of fluorescent dyes, probes, and NPs into fMIPs. In addition, various sensing mechanisms are reviewed, and depending on the application of the sensor, the different deployable formats, their advantages, drawbacks, and impact will be presented and discussed.
Because ammonia and its reaction products can cause considerable damage to human health and ecosystems, there is a need for reliably operating and reversibly interacting sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for in-the-field measurements. Herein, the development of a sensor material for gaseous ammonia in the lower ppm to ppb range using optical fluorescence as transduction mechanism is presented. A fluorescent dye, which shows reversible fluorescence enhancement in the presence of ammonia is incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. The sensor material is integrated into a prototype of a miniaturized sensor device, facilitating long-term operation. To calibrate the optical sensor system a gas standard generator, producing standard gas mixtures, is used, leading to a sensitivity down to lower ppm concentrations of ammonia.
Mit Tröpfchen Spielen
(2018)
Mikrofluidische Systeme sind leistungsstarke analytische Tools mit attraktiven Eigenschaften wie miniaturisierter Größe, geringem Reagenzien und Probenverbrauch, schneller Ansprech- und kurzer Messzeit. Der Bedarf solcher leistungsstarken, miniaturisierten und direkt vor Ort anwendbaren Sensorsysteme steigt kontinuierlich, hauptsächlich durch das Bedürfnis der Gesellschaft, schneller, besser und umfassender über kritische Faktoren im Lebens- und Arbeitsumfeld sowie der Umwelt informiert zu sein.
Playing with Droplets
(2018)
Microfluidic devices are powerful analytical tools with appealing features such as miniaturized size, low reagent and sample consumption, rapid response and short measurement times. As society wants to be ever better, earlier and more comprehensively informed about critical factors in life, work, and the environment, the demand for powerful measurement devices for use outside of the laboratory constantly increases.
In the KonSens Project, sensor systems are developed, validated, and operated in form of functional models for the application areas Structure Integrated Sensors and Mobile Multi-gas Sensors. Key aspects are the detection and evaluation of corrosion processes in reinforced concrete structures as well as the detection and quantification of very low concentrations of toxic gases in air. The adaption of sensor principles from the lab into real-life application including appropriate communication techniques is a major task.
In recent years, Structural Health Monitoring have gained in importance, since growing age of buildings and infrastructure as well as increasing load requirements demand for reliable surveillance methods. In this regard, the project follows two strategies: First, the development and implementation of completely embedded sensor systems consisting of RFID-tag and in situ sensors, and their further application potential (e.g. for precast concrete elements, roadways, wind power plants, and maritime structures). Secondly, the development of a long-term stable, miniaturized, fiber optic sensor for a ratiometric and referenced measurement of the pH-value in concrete based on fluorescence detection as an indicator for carbonation and corrosion.
Environmental pollution through emission of toxic gases becomes an increasing problem not only in agriculture (e.g. biogas plants) and industry but also in urban areas. This leads to increasing demand to monitor environmental emissions as well as ambient air and industrial air components in many scenarios and in even lower concentrations than nowadays. The selectivity of luminescence-based sensors is enabled by the combination of the sensing dye and the material, which is used as accumulation medium for concentration of the analyte. This principle allows for developing gas sensors with high selectivity and sensitivity of defined substances. Additional benefits, particularly of fluorescence-based sensors, are their capability for miniaturization and potential multiplex mode. Objective is the development and implementation of sensors based on fluorescence detection for defined toxic gases (ammonia, hydrogen sulfide, ozone, and benzene) with sensitivity in the low ppm or even ppb range. Additionally, the integration of such sensors in mobile sensor devices is addressed.
Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The system is part of a mobile sensor network of several sensor units, which can also be used as standalone systems.
The motivation and objective of this research is to develop gas sensors based on fluorescence detection with range of ppm / ppb. For this task a reference system is required, which contains volatile organic compound (VOC) sensors for reference data from different scenarios. The integrated multi-sensor unit can measure different gases through the integrated 3-fold VOC sensor, which can be adapted to the addressed scenario. . The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrated memory card. If the previously determined limit range is exceeded, an alarm is generated. The system is an important tool towards further developments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors.
2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein.
Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization.
Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period.
Besides the traditional areas of application such as separation and enrichment which made molecularly imprinted polymers (MIPs) very attractive, they have emerged as a valuable detection tool in the field of environmental analysis due to the low production costs, high stability, format adaptability and the possibility to imprint and thus specifically recognize a wide variety of target analytes. Regarding optical sensing, however, MIPs have only been used in considerably few applications, especially in fluorescence sensors, basically because of the challenge to incorporate a fluorescently responding moiety into a polymer matrix. One way to overcome this limitation is the coating of a thin MIP layer onto the surface of silica nanoparticles using tailor-made fluorescent indicator monomers or cross-linkers for direct transfer of the binding event into an optical signal.
Regarding sensors for environmental monitoring, microfluidic devices utilizing optical detection modules are especially appealing because of their versatility in terms of miniaturization and automation. So far, MIPs have only rarely been used in combination with microfluidic sensor devices.
Here, we present the hydrogen bond-mediated optical response of fluorescent MIP sensor particles against a typical small-molecule analyte 2,4-D (2,4-dichlorophen¬oxyacetic acid) which is an important herbicide widely used in agriculture and known to cause adverse health effects when ingested by contaminated water. By combining the sensor particles with droplet-based 3D microfluidics, a microfluidic phase-transfer assay was designed which enables the direct analysis of 2,4-D in river and lake water without sample pre-treatment or clean-up.