### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Vortrag (47)
- Zeitschriftenartikel (30)
- Beitrag zu einem Tagungsband (25)
- Beitrag zu einem Sammelband (12)
- Posterpräsentation (2)
- Forschungsbericht (2)

#### Sprache

- Englisch (71)
- Deutsch (46)
- Mehrsprachig (1)

#### Schlagworte

- Creep (16)
- Superalloy (9)
- LCF (7)
- Rafting (7)
- Nickel-base superalloys (6)
- Single crystal (6)
- TMF (6)
- Constitutive law (5)
- Creep damage (5)
- Low cycle fatigue (5)

#### Organisationseinheit der BAM

Creep damage of single-crystal nickel base superalloys: mechanisms and effect on low cycle fatigue
(2010)

The main mechanisms of creep damage of single-crystal nickel-base superalloys are the loss of the interface coherency, coarsening of the γ / γ'-microstructure, precipitation of topologically closed packed phases and growth of porosity. This degradation deteriorates the mechanical properties such as yield stress, creep lifetime and especially low-cycle fatigue life, which can be reduced nearly by a factor of 10. The degradation kinetics during creep was characterised quantitatively on the superalloy CMSX-4. A new non-destructive testing technique was applied to cover a wide test parameter range with few specimens in a relatively short time: repeated load annealing of wedge shaped specimens.

Single crystal superalloys usually contain pores of sizes 5-10 micro-m after casting and heat treatment. These pores can be reduced under compression by combined creep and diffusion in a subsequent treatment called Hot Isostatic Pressing (HIP). The paper presents a methodology to simulate pore shrinkage under HIP conditions in two dimensions (2D).
At the scale of the pores, which is also the scale of the sub-grains (<50 micro-m) the dislocation sources cannot be assumed to be homogeneously distributed. Thus, the applicability of classical crystal plasticity is questionable. In this case, the transport of dislocations under an applied stress from the location where they are nucleated must be explicitly modelled. This is done by solving the transport equations for the dislocation densities and the elasticity equations in 2D. The dislocations are assumed to be nucleated at Low Angle Boundaries. They glide or climb through the sub-grains with a stress dependent velocity.
The transport equations are solved by the Flux-Corrected Transport method, which belongs to the predictor-corrector class of algorithms. In the first step, an artificial diffusion is introduced, which suppresses spurious oscillations of the solution. In a second step, the solution is corrected in such a way that no additional extremes appear and that the extremes do not grow. The algorithm is validated by simulating the transport of simple distributions with a constant velocity field.
With the dislocation velocities and the computed dislocation densities, the inelastic shear rate at the slip system level is computed by integrating the Orowan equation. In the 2D-setting, three slip systems are considered. The contributions of these slip systems are summed up to obtain the total inelastic strain rate. Dislocation glide and climb and the coupling of climb with vacancies diffusion are considered.
The resolution of the equilibrium equations from the inelastic strains turned out to be prone to numerical instabilities. As an alternative, the stresses are directly computed from the distribution of geometrically necessary dislocations following the method presented in. The resulting boundary value problem is solved by the Least-Square Finite Element method.
Examples of simulations are presented for a representative region under creep tension and for a pore shrinking under external pressure.

An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one.

Gas turbines are widely used for a variety of purposes including power generation, compression or as jet engines in aircrafts. The critical components of a gas turbine are the high-pressure turbine blades which operate under severe conditions. These include thermo-mechanical loadings over temperatures ranging from room temperature up to 1100°C.
While a large number of constitutive models for single crystals have been proposed, most applications are restricted to special loading scenarios, temperature range and deformation mechanisms. In particular, a number of models are focused on pure creep. Only a few papers consider application of both creep and fatigue. Applications of the constitutive models to long-term stress relaxation are even scarcer. The new model assumes deformation-induced softening and can properly reproduce the viscous behavior at different time scales.
The model has been calibrated with the uniaxial tests at 800°C and 950°C in [001], [011] and [111] specimens of a nickel-basis superalloy. The predicted creep, short- and long-term relaxation and cyclic tests are in reasonable agreement with the experimental observations.

Es konnte anhand einer numerischen Voruntersuchung gezeigt werden, dass anhand der kombinierten Auswertung der im Versuch verwendeten Sensorik eine Einteilung der unter Ermüdung in Bohrlochproben auftretenden Rissformen in verschiedene Hauptkategorien (Eckriss, Oberflächenriss, Durchgangsriss) möglich ist.

The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach.

Die Analyse der Lebensdauer von Bauteilen unter thermomechanischer Ermüdung (TMF) erfordert ein geeignetes Stoffgesetz, welches in der Lage ist, zyklische Plastizität die Abhängigkeit der Spannungsantwort nach der Dehnrate, Kriechen und Spannungsrelaxation temperaturabhängig zu beschreiben und ein Lebensdauermodell, welches in Abhängigkeit von der örtlich aufgelösten Spannungs- und Verformungsgeschichten eine Schätzung der Anzahl der Zyklen bis zum Anriss liefern kann.

The creep behavior of single-crystals of the nickel-base superalloy CMSX-4 was investigated at 1288°C, which is the temperature of the hot isostatic pressing (HIP) treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no Gamma’-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g. the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-section area psi of [001] crystals reached nearly 100%, while for a [111] crystal psi=62%. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals didn’t not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. From the shape of deformed specimens and TEM investigations it was concluded that the main strain contribution resulted from <011> {111} octahedral slip.