### Filtern

#### Dokumenttyp

- Zeitschriftenartikel (12)
- Posterpräsentation (4)
- Vortrag (3)
- Beitrag zu einem Tagungsband (2)

#### Schlagworte

- Computed tomography (7)
- Additive manufacturing (5)
- Aluminum alloy (3)
- Metal Matrix Composite (3)
- Metal matrix composite (3)
- Neutron diffraction (3)
- X-ray refraction (3)
- Deep learning (2)
- Intermetallics (2)
- Load partition (2)

#### Organisationseinheit der BAM

- 8 Zerstörungsfreie Prüfung (21)
- 8.5 Mikro-ZfP (21)

The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.

This study reports the results of the preliminary assessment to fabricate Ti-10at% Nb alloy by electron beam melting (EBM®) from a blend of elemental Nb and Ti powders. The microstructure of the EBM-manufactured Ti-10at% Nb alloys is sensitive to the following factors: different sintering properties of Nb and Ti powders, powder particle properties, material viscosities at varying melt pool temperatures, β-stabilizer element content and the EBM® process parameters. Three phases were observed in as-manufactured Ti-10at% Nb alloy: μm-size Nb phase, a Nb-rich β-solid solution surrounding Nb phase, lamellar structured α-phase and β-solid solution with different distribution and volume fraction. Thus, the combination of powder particle characteristics, very short time material spends in molten condition and sluggish kinetics of mixing and diffusional process in Ti-Nb alloy results in heterogeneous microstructures depending on the local Nb content in the powder blend and the EBM® process conditions.

The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and Show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kröner’s model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the
current state-of-the-art with a predictive tool.

Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V
(2020)

The laser powder bed fusion (LPBF) production process often results in large residual stress (RS) in the parts. Nondestructive techniques to determine RS are badly needed. However, a reliable quantification of macro-RS (i.e., stress at the component level) by means of diffraction-based techniques is still a great challenge, because the link between diffraction-based strain and macro-RS is not trivial. In this study, we experimentally determine (by means of in-situ synchrotron radiation diffraction) this link for LPBF Ti-6Al-4V. We compare our results with commonly used models to determine the so-called diffraction elastic constants (DECs). We show that LPBF materials possess different DECs than wrought alloys, simply because their microstructural and mechanical properties are different. We also show that the existing models can be used to calculate DECs only if high accuracy of the RS values is not required. If the peculiarities of the microstructure have to be taken into account (as is the case of additively manufactured materials), a radically new approach is desirable.

Explaining Deviatoric Residual Stresses in Aluminum Matrix Composites with Complex Microstructure
(2020)

The residual stresses in multiphase metal Matrix composites with both random planar-oriented short fibers and particles were studied by neutron diffraction and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observed that randomly oriented phases possess non-hydrostatic residual stress. The recently developed modeling Approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses Accounting for the interaction of random oriented phases with fibers having preferential orientation.

The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement.

The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF.

X-ray refraction related interaction has received rising interest since about two decades in the field of imaging, beam shaping and analysis although being discovered a century ago. Due to refraction at interfaces in inhomogeneous media X-rays undergo natural focusing (or defocusing) of waves, revealing caustics. Such Kind of intensity patterns are well-known for visible light, but have been sparsely discussed for X-rays. The Variation of irradiation density may be predicted in case of known shapes. Analogously to light optics, the intensity distributions cover several orders of magnitude including complete extinction. The partly convergent (and divergent) caustic stripes originate from narrow zones of typical size of some 10−6 of the boundary curvature radius. For the deflection of plane wave synchrotron radiation (energy in the range of some keV to some ten keV) at rods and tubes of several μm diameter, we find good Agreement between experiments and modeling by ray tracing according to Snell’s law without additional diffraction contributions. Apart from Basic Research implications, caustics may influence the performance of irradiation technologies such as sterilization or molecular cross-linking.

The 3D microstructure of an Al alloy matrix composite with two ceramic reinforcements was investigated by synchrotron X-ray tomography. A deep learning algorithm was used for the segmentation of four different phases. We show that convolutional networks with the U-Net architecture are able to solve complex segmentation tasks with small amount of training data.