### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (10)
- Vortrag (2)
- Zeitschriftenartikel (1)
- Posterpräsentation (1)

#### Schlagworte

- Damage detection (4)
- Value of information (3)
- Damage detection system (2)
- Fault detection (2)
- Bayesian updating (1)
- Concrete bridge (1)
- Convidence intervals (1)
- Damage detection uncertainty (1)
- Damage localization (1)
- Damage quantification (1)

#### Organisationseinheit der BAM

This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented. The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural integrity and facilitating to describe the structural system performance and its functionality throughout the service life. The structural system performance is described with its functionality, its deterioration and its behavior under extreme loading. The structural system reliability given the damage detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated as the difference between the expected benefits and risks utilizing the damage detection information or not. With an application example of the developed approach based on a deteriorating Pratt truss system, the value of damage detection information is determined,demonstrating the potential of risk reduction and expected cost reduction.

This paper deals with uncertainty considerations in damage diagnosis using the stochastic subspace-based damage detection technique. With this method, a model is estimated from data in a (healthy) reference state and confronted to measurement data from the possibly damaged state in a hypothesis test. Previously, only the uncertainty related to the measurement data was considered in this test, whereas the uncertainty in the estimation of the reference model has not been considered. We derive a new test framework, which takes into account both the uncertainties in the estimation of the reference model as well as the uncertainties related to the measurement data. Perturbation theory is applied to obtain the relevant covariances. In a numerical study the effect of the new computation is shown, when the reference model is estimated with different accuracies, and the performance of the hypothesis tests is evaluated for small damages. Using the derived covariance scheme increases the probability of detection when the reference model estimate is subject to high uncertainty, leading to a more reliable test.

This paper deals with vibration-based damage localization and quantification from output-only measurements. We describe an approach which operates on a data-driven residual vector that is statistically evaluated using information from a finite element model, without updating the parameters of the model. First, the damaged elements are detected in statistical tests, and second, the damage is quantified only for the damaged elements. We propose a new residual vector in this context that is based on the transfer matrix difference between reference and damaged states, and compare it with a previously introduced subspace-based residual. We show localization and quantification on both residuals in simulations.

The local asymptotic approach is promising for vibration-based fault diagnosis when associated to a subspace-based residual function and efficient hypothesis testing tools. It has the ability of detecting small changes in some chosen system parameters. In the residual function,the left null space of the observability matrix associated to a reference model is confronted to the Hankel matrix of output covariances estimated from test data. When this left null space is not perfectly known from a model, it should be replaced by an estimate from data to avoid model errors in the residual computation. In this paper, the asymptotic distribution of the resulting data-driven residual is analyzed and its covariance is estimated, which includes also the covariance related to the reference null space estimate. The advantages of the data-driven residual are demonstrated in a numerical study, and the importance of including the covariance of the reference null space estimate is shown, which increases the detection Performance.

This paper addresses the effects of the deterioration on the value of damage detection information. The quan-tification of the value of damage detection information for deteriorated structures is based on Bayesian pre-posterior decision analysis, comprising structural system performance models, consequence, benefit and costs models and damage detection information models throughout the service life of a structural system. The value of damage detection information accounts for the relevance and precision of the information to ensure the structural integrity and to reduce the potential structural system risks and expected costs throughout the ser-vice life before implementing damage detection system. With the developed approach, the value of damage detection information for a statically determinate Pratt truss bridge girder subjected to different deterioration models is calculated. The analysis shows the impact of the deterioration model parameters on the value of damage detection information. The results can be used to develop optimal maintenance strategies before im-plementation of the damage detection system.

This paper addresses how the value of damage detection Information depends on key Parameters of the Structural Health Monitoring (SHM) system including number of sensors and sensor locations. The Damage Detection System (DDS) provides the information by comparing ambient vibration measurements of a (healthy) reference state with measurements of the current structural system. The performance of DDS method depends on the physical measurement properties such as the number of sensors, sensor positions, measuring length and sensor type, measurement noise, ambient excitation and sampling frequency, as well as on the data processing algorithm including the chosen type I error for the indication threshold. The quantification of the value of Information (VoI) is an expected utility based Bayesian decision analysis method for quantifying the difference of the expected economic benefits with and without information. The (pre-)posterior probability is computed utilizing the Bayesian updating theorem for all possible indications. If changing any key parameters of DDS, the updated probability of system failure given damage detection information will be varied due to different indication of probability of damage, which will result in changes of value of damage detection information. The DDS system is applied in a statically determinate Pratt truss bridge girder. Through the analysis of the value of information with different SHM system characteristics, the settings of DDS can be optimized for minimum expected costs and risks before implementation.

Damage detection systems (DDS) provide information of the structural system integrity in contrast to e.g. local information by inspections or non-destructive testing techniques. In this paper, an approach is developed and demonstrated to utilize DDS information to update the structural system reliability and to integrate this information in structural system risk and utility analyses. For this aim, a novel performance modelling of DDS building upon their system characteristics and non-destructive testing reliability is introduced. The DDS performance modelling accounts for a measurement system in combination with a damage detection algorithm attached to a structural system in the reference and damage states and is modelled with the probability of indication accounting for type I and II errors. In this way, the basis for DDS performance comparison and assessment is provided accounting for the dependencies between the damage states in a structure. For updating of the structural system reliability, an approach is developed based on Bayesian updating facilitating the use of DDS information on structural system level and thus for a structural system risk analysis. The structural system risk analysis encompasses the static, dynamic, deterioration, reliability and consequence models, which provide the basis for the system model for calculating the direct risks due to component failure and the indirect risks due to system failure. Two case studies with the developed approach demonstrate a high Value of DDS Information due to risk and expected cost reduction.