### Filtern

#### Dokumenttyp

- Beitrag zu einem Tagungsband (12)
- Vortrag (8)
- Zeitschriftenartikel (5)
- Buchkapitel (2)
- Posterpräsentation (1)

#### Sprache

- Englisch (28) (entfernen)

#### Schlagworte

- Micromechanical modelling (4)
- Offshore wind turbines (4)
- Pile foundations (4)
- Jet erosion (3)
- LBM-DEM (3)
- Numerical model (3)
- Physical phenomenology (3)
- Assessment criteria (2)
- Bridge transition zone (2)
- Cyclic loads (2)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (28) (entfernen)

Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion.

Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

In this lecture, both the physical behaviour and the general design procedures for deep foundations in the context of the offshore wind energy generation are presented. The first part of the lecture deals with the phenomenology and design of the pile foundations relative to the bearing of axial loads. The second part dwelves on the particularities of the lateral loads as well as on two research topics beyond the current design procedures, namely the hydromechanical coupling and the aging and fatigue phenomena as observed in the course of large-scale field tests.

A great deal is possible, even on the seabed. Together, wind and waves shake the foundations of the offshore wind turbines. "ere is also the “normal” current and ebb and #ow of the tides that are so distinctive in the North Sea. Pore water pressure can also occur on the seabed, loosening it. Where monopiles are involved, the worst case is that the stability of the whole turbine can be altered – even if such a monopile rammed into the seabed has a diameter of up to eight metres. Over half the planned offshore wind turbines in the North and Baltic Seas are to have monopile foundations, and over 40 % are to have multi-pile foundations, designed for example as a tripod. "is is why pile foundations and their loads deserve special attention. For one thing above all is to be avoided in plant operations, and that is the risk of turbine tilt.

Offshore wind turbines enter unknown territory, especially where the foundations are concerned. This is because offshore wind power can only make use of the experience from the common offshore constructions used by the oil and gas industry to a limited extent. The offshore wind industry has tried to reduce foundation dimensions, especially the pile lengths, as much as possible compared with those of the oil and gas industry. This is because with the large number of wind turbines involved it can provide considerable economic advantages. On the other hand, the stability of the foundations is additionally at risk because due to the much larger number of cyclic loads they are subjected to it is very difficult to predict how they will behave. Since offshore wind farms are manufactured in series, every systematic fault in the foundation acts as a series fault for a large number of turbines. This calls for monitoring – and the right dimensions of pile foundation, the most common type of foundations used for wind turbines

Most railway embankments in the UK were built in the Victorian era and are of end-tipped construction using materials (usually cohesive) excavated from adjacent cuttings, resulting in a clod-and-matrix structure. Historically, there has been a lack in understanding of the mechanical behaviour of such railway embankments. In the next decade railway traffic in the UK, particularly freight, is forecast to grow considerably. Consequently, there is a need to improve the understanding of how increases in rail traffic loading may influence the mechanical behaviour of railway embankments and thus track performance. The Rail Safety and Standards Board in conjunction with Network Rail is currently undertaking a programme of applied research into this topic. As part of these studies a programme of physical model tests has been carried out. Physical model tests can provide high quality data on system performance under a large range of loading conditions and geometrical configurations. The data can be generated rapidly, with test periods of weeks or months rather than years or decades. Additionally, boundary conditions are well-defined and controlled, compared with the complex situations encountered in full scale embankments in the field. This paper summarises the physical model test programme, the development of the test set-up, the tests themselves and the conclusions drawn.

This paper deals with the system identification of a mechanical structure supported by nonlinear springs subjected to an external load. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. However, the monitoring applications often deal with the inverse problem. The loads and displacements of the system are known and certain mechanical Parameters of the system are sought. The solution of such inverse problems can be difficult, especially when they have a nonlinear and multimodal character, which often makes them appear intractable at first sight. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solvers. This knowledge can play a decisive role in identifying the System properties and it can be easily included as a boundary condition when applying evolutionary algorithms.
This article discusses how and under what conditions the unknown spring resistances can be identified. The practical application of this procedure is exemplified here with the mechanical system of a pile foundation.

Erosive phenomena at the mesoscale – Perspectives and challenges using coupled LBM-DEM models
(2017)

The physical phenomena related to the erosion of granular materials by a fluid flow are ubiquitous and often present major challenges and threats to a wide range of civil engineering constructions and infrastructures. Catastrophic earth-dam failures and large sinkholes are just some of the possible outcomes of the different forms of erosion (a.o. surface erosion, suffusion, piping, backwards erosion, etc…). However, little is known about the actual mechanical origins of erosion, while the assessment of erodibility is generally performed by means of experimental tests and empirical correlations.
Here we provide a general overview of some current research models aiming to clarify the micromechanical phenomena and their macromechanical consequences taking place in different erosion scenarios. The employed numerical techniques rely on the coupling of two well-stablished particle methods for the fluid and solid phases, namely the Lattice Boltzmann Method (LBM) and the Discrete Element Method (DEM) respectively. Further ingredients of our numerical models include an elastoplastic cohesion model for intergranular solid bridges and a subcritical debonding model for the simulation of transient damage processes within the soil matrix.

In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity.
The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously.

Design challenges for offshore wind-farms. From foundation mechanics to wind-farm aerodynamics
(2018)

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Then some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.

This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided in two lectures.
The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here.
The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended.
Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the cyclic pile fatigue and the so-called pile setup (i.e. the time effects on the axial pile capacity). The relevance of these two topics is illustrated with experimental results from a field testing campaign on real large-scale piles.

The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena.

The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation.

This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures.
The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here.
The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended.
Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the hydromechanical coupling effects (i.e. the excess pore-pressure generation around the monopiles), the cyclic pile fatigue and the so-called pile Setup (i.e. the time effects on the axial pile capacity). The relevance of the latter two topics is illustrated with experimental results from a field testing campaign on real large-scale piles.

This talk provides a brief introduction on general engineering aspects of offshore wind energy production. Some geomechanical issues for the foundation of OWTs into the seabed are introduced, while the results from experimental investigations and coupled computational analysis are discussed.
In the second part of the seminar, the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out.
Concerning the geomechanical issues the talk shows that: i) The pile’s bearing capacity can degrade under cyclic loading (waves, wind, …). ii) The time effects can be relevant: Capacity improvement can be substantial, but also fragile. iii) There are cyclic PWP effects: Cyclic interaction with pore water may lead to soil softening and an uncoupled analysis (current design practice) is potentially unsafe.
And concerning the hydromechanical and aerodynamical design considerations, this seminar shows that: i) Numerical analysis of turbine’s interaction with wind/waves is useful and affordable. ii) Simplified models can provide insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout.

The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique.
The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique.

Driven steel piles are commonly used as deep foundations for a wide range of engineering structures, particularly in the offshore branch. They are also an interesting example among the broad spectrum of geotechnical applications where the fluid-solid interaction at the pore-scale can play a major role for the macromechanical behaviour of the whole system.
In the context of the geotechnical practice for offshore wind-farm structures, both the industrial design and the actual dimensions of the large piles used as foundations in the seabed are often driven by factors such as the soil resistance to driving (SRD), which are still not well understood and often estimated based on mere empirical correlations or overly simplified one-dimensional models. In particular, the role of the micromechanical effects during the installation process (e.g. local dilatancy or contractancy) and their consequences on the pore pressure levels at the pile-tip and on the effective resistance to driving, are generally either disregarded or at most assumed to be covered by the simplified engineering “black-box” solutions.
Here, we propose a general framework to address such local aspects of a geotechnical application involving fluid-saturated soils while retaining the focus on the micro-scale phenomena. We advocate for an approach that combines the relative simplicity of the Discrete Element Method (DEM) for the solid mechanics with the capabilities of the Lattice Boltzmann Method (LBM) for the fluid dynamics. In this sense, we aim to compile some useful techniques and practical recommendations for an efficient GPU-based implementation of a micromechanical LBM-DEM simulation tool.