### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Beitrag zu einem Tagungsband (12)
- Vortrag (8)
- Zeitschriftenartikel (7)
- Buchkapitel (2)
- Beitrag zu einem Sammelband (1)
- Posterpräsentation (1)

#### Sprache

- Englisch (31) (entfernen)

#### Schlagworte

- Offshore pile foundation (4)
- Offshore wind turbines (4)
- Pile foundations (4)
- Cyclic lateral load (3)
- Jet erosion (3)
- LBM-DEM (3)
- Micromechanical modelling (3)
- Numerical model (3)
- Physical phenomenology (3)
- Pore pressure accumulation (3)

#### Organisationseinheit der BAM

- 7 Bauwerkssicherheit (25)
- 7.2 Ingenieurbau (25)
- 7.4 Baustofftechnologie (1)

A mechanical structure supported by nonlinear springs subjected to an external load is considered. If all mechanical parameters of the system were known, the displacement of the system subjected to this load could be easily calculated. If not all of the parameters are known, but the load and the displacement are measured at one location, an inverse problem exists. In the presented problem the nonlinear springs are unknown and have to be determined. At first glance a problem needs to be solved, which is underdetermined due to the number of unknown variables. However, evolutionary computing can be applied to solve this inverse, nonlinear and multimodal problem. Sometimes a prior knowledge exists on certain system properties, which is difficult to implement into analytical or numerical solver. This knowledge can play a decisive role in identifying the system properties and it can be easily included as boundary condition when applying evolutionary algorithm. This article examines how and under what conditions the spring resistances can be identified. The procedure is exemplified at a mechanical system of a pile foundation.

Offshore piles have to withstand predominantly cyclic axial loads when they are installed in multi-pile configurations, as in jacket foundations. The dimensions of the pile are governed by both the internal capacity and the fatigue behaviour of the steel cross-section as well as by its external capacity in the pile-soil interaction. Owing to the large numbers of piled foundations required for current and future offshore wind farms, there is an urgent need to optimize the dimensions and related costs of single piles. With regard to the pile capacity, two major topics of research are the determination of possible capacity gains due to pile ageing effects and proper consideration of cyclic degradation. In order to investigate both effects, a large-scale testing facility has been constructed at the BAM TTS site in Horstwalde near Berlin. This open-air facility allows large tubular driven piles to be loaded cyclically in both tension and compression while studying the ageing effects by introducing delays between the testing campaigns. First results already show a moderate increase in pile capacity over time. Concerning the anticipated capacity degradation of cyclically loaded piles, preliminary results show an unexpected behaviour. Additional tests are currently being conducted for further clarification.

A comprehensive numerical model for the analysis of offshore foundations under a general transient loading is presented here. The theoretical basis of the model lies on the Swansea formulation of Biot's equations of dynamic poroelasticity combined with a constitutive model that reproduces key aspects of cyclic soil behaviour in the frame of the theory of generalised plasticity. On the practical side, the adoption of appropriate finite element formulations may prevent the appearance of spurious numerical instabilities of the pore pressure field. In this respect, the use of a coupled enhanced-strain element is here proposed. On the other hand, the practicality of the presented model depends ultimately on its computational efficiency. Some practical recommendations concerning the solution strategies, the matrix storage/handling procedures and the parallel multi-processor computation are here provided. Finally, the performance of the model with a benchmark study case and its practical application to analyse the soil–structure interaction of an offshore monopile under a realistic transient storm loading are discussed.

Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests.

Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion.

In this lecture, both the physical behaviour and the general design procedures for deep foundations in the context of the offshore wind energy generation are presented. The first part of the lecture deals with the phenomenology and design of the pile foundations relative to the bearing of axial loads. The second part dwelves on the particularities of the lateral loads as well as on two research topics beyond the current design procedures, namely the hydromechanical coupling and the aging and fatigue phenomena as observed in the course of large-scale field tests.

A great deal is possible, even on the seabed. Together, wind and waves shake the foundations of the offshore wind turbines. "ere is also the “normal” current and ebb and #ow of the tides that are so distinctive in the North Sea. Pore water pressure can also occur on the seabed, loosening it. Where monopiles are involved, the worst case is that the stability of the whole turbine can be altered – even if such a monopile rammed into the seabed has a diameter of up to eight metres. Over half the planned offshore wind turbines in the North and Baltic Seas are to have monopile foundations, and over 40 % are to have multi-pile foundations, designed for example as a tripod. "is is why pile foundations and their loads deserve special attention. For one thing above all is to be avoided in plant operations, and that is the risk of turbine tilt.