### Filtern

#### Dokumenttyp

#### Schlagworte

- FITNET (3)
- SINTAP (3)
- Flaw assessment (2)
- Limit load (2)
- R6 procedure (2)
- Reference load (2)
- Reference stress method (2)
- Bruchmechanische Bauteilbewertung (1)
- EPRI method (1)
- EPRI-Methode (1)

#### Organisationseinheit der BAM

The net section limit load FY is a key input parameter for the accuracy of any
elastic-plastic flaw assessment procedure of the R6 type. Unfortunately available limit load
solutions are of variable quality since they have been obtained over decades by different
methods. As a consequence the results of the fracture analyses such as the critical load or
crack size are limited in their accuracy and are often significantly conservative. A further
problem is that common limit load solutions based on ligament yielding are inadequate in a
number of cases even for through crack configurations and should be replaced by some
kind of local yielding solutions. In the present paper a simple and straightforward reference
load definition is proposed instead of the limit load which strictly corresponds to a ligament
yielding parameter Lr = 1 in the R6 Routine and similar approaches such as SINTAP and
FITNET. This can be determined by finite element simulation for any geometry. In addition to
a previous study on thin wall notched plates the method is applied to plates containing
shallow semi-elliptical surface cracks. The results demonstrate that the approach provides a
suitable extension and improvement of the existing methods.

The net section limit load FY necessary for assessment at static loading is a key input for the accuracy of any elasticplastic flaw assessment procedure of the R6 type. Unfortunately available limit load solutions are of variable quality since they have been obtained over decades by different methods. As a consequence the results of the fracture analyses such as the critical load or crack size are limited in their accuracy and are often significantly conservative. Further, common limit load solutions based on ligament yielding are inadequate in a number of cases even for through crack configurations and should be replaced by some kind of local yielding solutions. In the present paper a simple and straightforward reference load definition is proposed instead of the limit load which strictly corresponds to a ligament yielding parameter Lr = 1 in the R6 Routine and similar approaches such as the European SINTAP and FITNET methods. This can be determined by finite element simulation for any geometry. In addition to a previous study on thin wall notched plates the method is applied to plates containing shallow semi-elliptical surface cracks. The results demonstrate that the approach provides a suitable extension and improvement of the existing methods.

Welding is one of the most common methods in industrial practice for joining components. Its main advantages are high speed in manufacturing combined with low costs and, usually, a high degree of flexibility, integrity and reliability. Nevertheless, welding is a highly complex metallurgical process and, therefore, weldments are susceptible to material discontinuities, flaws and residual stresses which may lead to structural failure and life time reduction. As a consequence weldments are an important field of fracture mechanics methods although its application is more complex than for homogeneous or non-welded structures. The aim of the paper is to provide an overview on the current state of fracture mechanics application to weldments. It starts by discussing the specific features which any fracture mechanics analysis of weldments has to take into account. Then, the experimental determination of fracture toughness, fatigue crack propagation and tensile properties of weldments is addressed. Finally, the analytical determination of the crack driving force in components and structural integrity assessment approaches for weldments are presented.